Most cited article - PubMed ID 17086421
Cytogenetic evidence for diversity of two nuclei within a single diplomonad cell of Giardia
Giardia intestinalis is a globally important microbial pathogen with considerable public health, agricultural, and economic burden. Genome sequencing and comparative analyses have elucidated G. intestinalis to be a taxonomically diverse species consisting of at least eight different sub-types (assemblages A-H) that can infect a great variety of animal hosts, including humans. The best studied of these are assemblages A and B which have a broad host range and have zoonotic transmissibility towards humans where clinical Giardiasis can range from asymptomatic to diarrheal disease. Epidemiological surveys as well as previous molecular investigations have pointed towards critical genomic level differences within numerous molecular pathways and families of parasite virulence factors within assemblage A and B isolates. In this study, we explored the necessary machinery for the formation of vesicles and cargo transport in 89 Canadian isolates of assemblage A and B G. intestinalis. Considerable variability within the molecular complement of the endolysosomal ESCRT protein machinery, adaptor coat protein complexes, and ARF regulatory system have previously been reported. Here, we confirm inter-assemblage, but find no intra-assemblage variation within the trafficking systems examined. This variation includes losses of subunits belonging to the ESCRTIII as well as novel lineage specific duplications in components of the COPII machinery, ARF1, and ARFGEF families (BIG and CYTH). Since differences in disease manifestation between assemblages A and B have been controversially reported, our findings may well have clinical implications and even taxonomic, as the membrane trafficking system underpin parasite survival, pathogenesis, and propagation.
- MeSH
- Feces parasitology MeSH
- Genomics MeSH
- Genotype MeSH
- Giardia lamblia * MeSH
- Giardiasis * parasitology MeSH
- Humans MeSH
- Public Health MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Canada MeSH
CRISPR/Cas9-mediated genome editing has become an extremely powerful technique used to modify gene expression in many organisms, including parasitic protists. Giardia intestinalis, a protist parasite that infects approximately 280 million people around the world each year, has been eluding the use of CRISPR/Cas9 to generate knockout cell lines due to its tetraploid genome. In this work, we show the ability of the in vitro assembled CRISPR/Cas9 components to successfully edit the genome of G. intestinalis. The cell line that stably expresses Cas9 in both nuclei of G. intestinalis showed effective recombination of the cassette containing the transcription units for the gRNA and the resistance marker. This highly efficient process led to the removal of all gene copies at once for three independent experimental genes, mem, cwp1 and mlf1. The method was also applicable to incomplete disruption of the essential gene, as evidenced by significantly reduced expression of tom40. Finally, testing the efficiency of Cas9-induced recombination revealed that homologous arms as short as 150 bp can be sufficient to establish a complete knockout cell line in G. intestinalis.
- Keywords
- CRISPR/Cas9, Giardia, gene knockout, multiploid,
- MeSH
- CRISPR-Cas Systems * MeSH
- Gene Editing methods MeSH
- Giardia lamblia * genetics MeSH
- Humans MeSH
- Tetraploidy MeSH
- RNA, Guide, CRISPR-Cas Systems MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Guide, CRISPR-Cas Systems MeSH
BACKGROUND: The presence of mitochondria is a distinguishing feature between prokaryotic and eukaryotic cells. It is currently accepted that the evolutionary origin of mitochondria coincided with the formation of eukaryotes and from that point control of mitochondrial inheritance was required. Yet, the way the mitochondrial presence has been maintained throughout the eukaryotic cell cycle remains a matter of study. Eukaryotes control mitochondrial inheritance mainly due to the presence of the genetic component; still only little is known about the segregation of mitochondria to daughter cells during cell division. Additionally, anaerobic eukaryotic microbes evolved a variety of genomeless mitochondria-related organelles (MROs), which could be theoretically assembled de novo, providing a distinct mechanistic basis for maintenance of stable mitochondrial numbers. Here, we approach this problem by studying the structure and inheritance of the protist Giardia intestinalis MROs known as mitosomes. RESULTS: We combined 2D stimulated emission depletion (STED) microscopy and focused ion beam scanning electron microscopy (FIB/SEM) to show that mitosomes exhibit internal segmentation and conserved asymmetric structure. From a total of about forty mitosomes, a small, privileged population is harnessed to the flagellar apparatus, and their life cycle is coordinated with the maturation cycle of G. intestinalis flagella. The orchestration of mitosomal inheritance with the flagellar maturation cycle is mediated by a microtubular connecting fiber, which physically links the privileged mitosomes to both axonemes of the oldest flagella pair and guarantees faithful segregation of the mitosomes into the daughter cells. CONCLUSION: Inheritance of privileged Giardia mitosomes is coupled to the flagellar maturation cycle. We propose that the flagellar system controls segregation of mitochondrial organelles also in other members of this supergroup (Metamonada) of eukaryotes and perhaps reflects the original strategy of early eukaryotic cells to maintain this key organelle before mitochondrial fusion-fission dynamics cycle as observed in Metazoa was established.
- Keywords
- Cell cycle, Cytoskeleton, Flagellum, Giardia, Mitochondrial division, Mitochondrial inheritance, Mitosomes, Protist, mitochondrial evolution,
- MeSH
- Databases, Genetic MeSH
- Giardia lamblia * genetics MeSH
- Mitochondrial Dynamics MeSH
- Mitochondria genetics MeSH
- Organelles MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Giardia intestinalis is an important single-celled human pathogen. Interestingly, this organism has two equal-sized transcriptionally active nuclei, each considered diploid. By evaluating condensed chromosome numbers and visualizing homologous chromosomes by fluorescent in situ hybridization, we determined that the Giardia cells are constitutively aneuploid. We observed karyotype inter-and intra-population heterogeneity in eight cell lines from two clinical isolates, suggesting constant karyotype evolution during in vitro cultivation. High levels of chromosomal instability and frequent mitotic missegregations observed in four cell lines correlated with a proliferative disadvantage and growth retardation. Other cell lines, although derived from the same clinical isolate, revealed a stable yet aneuploid karyotype. We suggest that both chromatid missegregations and structural rearrangements contribute to shaping the Giardia genome, leading to whole-chromosome aneuploidy, unequal gene distribution, and a genomic divergence of the two nuclei within one cell. Aneuploidy in Giardia is further propagated without p53-mediated cell cycle arrest and might have been a key mechanism in generating the genetic diversity of this human pathogen.
- Keywords
- Aneuploidy, FISH, chromosome, giardia, karyotype, protist,
- MeSH
- Aneuploidy * MeSH
- Cell Division physiology MeSH
- Cell Nucleus metabolism MeSH
- Chromosomal Instability genetics MeSH
- Genetic Variation genetics MeSH
- Genome, Protozoan genetics MeSH
- Giardia lamblia genetics isolation & purification MeSH
- In Situ Hybridization, Fluorescence MeSH
- Karyotype MeSH
- Cell Cycle Checkpoints genetics MeSH
- Humans MeSH
- Cell Proliferation genetics MeSH
- Chromosome Segregation genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
During mitotic prophase, chromosomes of the pathogenic unicellular eukaryote Giardia intestinalis condense in each of the cell's two nuclei. In this study, Giardia chromosomes were investigated using light microscopy, high-resolution field emission scanning electron microscopy, and in situ hybridization. For the first time, we describe the overall morphology, condensation stages, and mitotic segregation of these chromosomes. Despite the absence of several genes involved in the cohesion and condensation pathways in the Giardia genome, we observed chromatin organization similar to those found in eukaryotes, i.e., 10-nm nucleosomal fibrils, 30-nm fibrils coiled to chromomeres or in parallel arrangements, and closely aligned sister chromatids. DNA molecules of Giardia terminate with telomeric repeats that we visualized on each of the four chromatid endings of metaphase chromosomes. Giardia chromosomes lack primary and secondary constrictions, thus preventing their classification based on the position of the centromere. The anaphase poleward segregation of sister chromatids is atypical in orientation and tends to generate lagging chromatids between daughter nuclei. In the Giardia genome database, we identified two putative members of the kleisin family thought to be responsible for condensin ring establishment. Thus far, Giardia chromosomes (300 nm to 1.5 μm) are the smallest chromosomes that were analyzed at the ultrastructural level. This study complements the existing molecular and sequencing data on Giardia chromosomes with cytological and ultrastructural information.
- MeSH
- Adenosine Triphosphatases analysis MeSH
- Cell Nucleus ultrastructure MeSH
- Chromosomes physiology ultrastructure MeSH
- DNA-Binding Proteins analysis MeSH
- Giardia lamblia genetics ultrastructure MeSH
- Mitosis MeSH
- Multiprotein Complexes analysis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenosine Triphosphatases MeSH
- condensin complexes MeSH Browser
- DNA-Binding Proteins MeSH
- Multiprotein Complexes MeSH