Nejvíce citovaný článek - PubMed ID 17110329
Metastatic non-small cell lung cancer (mNSCLC) cells carry heterogeneity, not only among different subtypes but also within a single tumor. Most evidence suggests that mNSCLC exploits specific molecular drivers and mechanisms to maintain physiology, metabolism, and immune evasion during tumorigenesis. Genome-wide association studies also revealed particular mutations in the oncogenic drivers supporting tumor cell proliferation and survival, resulting in aggressive and drug-resistant phenotypes of mNSCLC. While significant progress has been made in understanding mNSCLC at the genetic and molecular levels, a considerable gap remains in understanding the dynamic interplay between intrinsic factors-particularly key tumor-associated cells-and tumor immune microenvironment (TIME) during metastasis. Hence, this review highlights histological and genetic characteristics, emphasizes the clinical relevance of metastasis, and the roles of tumor-associated cells in shaping the immunosuppressive tumor microenvironment (TME) in mNSCLC. Understanding these intricate features and mechanisms is crucial for identifying novel therapeutic targets and improving strategies to combat mNSCLC progression in diagnosed patients.
- Klíčová slova
- Cancer Stem Cells-, Genetic Alterations, Metastasis, Non-Small Cell Lung Cancer, Tumor Microenvironment,
- MeSH
- lidé MeSH
- metastázy nádorů MeSH
- nádorové mikroprostředí * imunologie MeSH
- nádory plic * patologie imunologie genetika MeSH
- nemalobuněčný karcinom plic * patologie imunologie genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
MicroRNAs (miRNAs) are involved in post-transcriptional gene expression regulation and in mechanisms of cancer growth and metastases. In this light, miRNAs could be promising therapeutic targets and biomarkers in clinical practice. Therefore, we investigated if specific miRNAs and their target genes contribute to laryngeal squamous cell carcinoma (LSCC) development. We found a significant decrease of miR-449a in LSCC patients with nodal metastases (63.3%) compared with patients without nodal involvement (44%). The AmpliSeq Transcriptome of HNO-210 miR-449a-transfected cell lines allowed the identification of IL6-R as a potential target. Moreover, the downregulation of IL6-R and the phosphorylation reduction of the downstream signaling effectors, suggested the inhibition of the IL-6 trans-signaling pathway. These biochemical effects were paralleled by a significant inhibition of invasion and migration in vitro and in vivo, supporting an involvement of epithelial-mesenchymal transition. These findings indicate that miR-449a contributes to suppress the metastasization of LSCC by the IL-6 trans-signaling block and affects sensitivity to external stimuli that mimic pro-inflammatory conditions.
- Klíčová slova
- IL-6 trans-signaling, LSCC, MT: non-coding RNAs, gene expression, metastases miR-449a, microRNAs,
- Publikační typ
- časopisecké články MeSH
Epigenetic modifications are inherited differences in cellular phenotypes, such as cell gene expression alterations, that occur during somatic cell divisions (also, in rare circumstances, in germ line transmission), but no alterations to the DNA sequence are involved. Histone alterations, polycomb/trithorax associated proteins, short non-coding or short RNAs, long non-coding RNAs (lncRNAs), & DNA methylation are just a few biological processes involved in epigenetic events. These various modifications are intricately linked. The transcriptional potential of genes is closely conditioned by epigenetic control, which is crucial in normal growth and development. Epigenetic mechanisms transmit genomic adaptation to an environment, resulting in a specific phenotype. The purpose of this systematic review is to glance at the roles of Estrogen signalling, polycomb/trithorax associated proteins, DNA methylation in breast cancer progression, as well as epigenetic mechanisms in breast cancer therapy, with an emphasis on functionality, regulatory factors, therapeutic value, and future challenges.
- Klíčová slova
- breast, cancer, epigenetics, estrogen, therapy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies with increasing incidence. The poor prognosis is due to the aggressive nature of the tumor, late detection, and the resistance to chemotherapy and radiotherapy. A radical surgery procedure is the only treatment that has been shown to improve the 5-year survival rate to 20-25%. However, the majority of patients (80-85%) are diagnosed with locally advanced or metastatic disease and just 15-20% patients are diagnosed in an early stage allowing them to undergo the potentially curative surgical resection. The early detection of PDAC without the use of invasive methods is challenging and discovery of a cost-effective biomarker with high specificity and sensitivity could significantly improve the treatment and survival in these patients. In this review, we summarize current and newly examined biomarkers in early PDAC detection.
- MeSH
- analýza přežití MeSH
- časná detekce nádoru metody MeSH
- dospělí MeSH
- duktální karcinom slinivky břišní krev diagnóza mortalita chirurgie MeSH
- hodnocení rizik MeSH
- invazivní růst nádoru patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery krev MeSH
- nádory slinivky břišní krev diagnóza mortalita chirurgie MeSH
- pankreatektomie metody MeSH
- přežití bez známek nemoci MeSH
- prognóza MeSH
- senioři MeSH
- staging nádorů MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- nádorové biomarkery MeSH
In the last decades, the development of new technologies applied to lipidomics has revitalized the analysis of lipid profile alterations and the understanding of the underlying molecular mechanisms of lipid metabolism, together with their involvement in the occurrence of human disease. Of particular interest is the study of omega-3 and omega-6 long chain polyunsaturated fatty acids (LC-PUFAs), notably EPA (eicosapentaenoic acid, 20:5n-3), DHA (docosahexaenoic acid, 22:6n-3), and ARA (arachidonic acid, 20:4n-6), and their transformation into bioactive lipid mediators. In this sense, new families of PUFA-derived lipid mediators, including resolvins derived from EPA and DHA, and protectins and maresins derived from DHA, are being increasingly investigated because of their active role in the "return to homeostasis" process and resolution of inflammation. Recent findings reviewed in the present study highlight that the omega-6 fatty acid ARA appears increased, and omega-3 EPA and DHA decreased in most cancer tissues compared to normal ones, and that increments in omega-3 LC-PUFAs consumption and an omega-6/omega-3 ratio of 2-4:1, are associated with a reduced risk of breast, prostate, colon and renal cancers. Along with their lipid-lowering properties, omega-3 LC-PUFAs also exert cardioprotective functions, such as reducing platelet aggregation and inflammation, and controlling the presence of DHA in our body, especially in our liver and brain, which is crucial for optimal brain functionality. Considering that DHA is the principal omega-3 FA in cortical gray matter, the importance of DHA intake and its derived lipid mediators have been recently reported in patients with major depressive and bipolar disorders, Alzheimer disease, Parkinson's disease, and amyotrophic lateral sclerosis. The present study reviews the relationships between major diseases occurring today in the Western world and LC-PUFAs. More specifically this review focuses on the dietary omega-3 LC-PUFAs and the omega-6/omega-3 balance, in a wide range of inflammation disorders, including autoimmune diseases. This review suggests that the current recommendations of consumption and/or supplementation of omega-3 FAs are specific to particular groups of age and physiological status, and still need more fine tuning for overall human health and well being.
- Klíčová slova
- Disease, Health, Inflammation, Lipidomics, Lipids, Long chain polyunsaturated fatty acids, Omega-3, Resolvins,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Targeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested, many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment. Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to be relatively inexpensive, it should help us address stages and types of cancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for future research is offered.
- Klíčová slova
- Cancer hallmarks, Integrative medicine, Multi-targeted, Phytochemicals, Targeted therapy,
- MeSH
- chemorezistence genetika MeSH
- cílená molekulární terapie * MeSH
- fytogenní protinádorové látky terapeutické užití MeSH
- genetická heterogenita * MeSH
- individualizovaná medicína * MeSH
- lidé MeSH
- nádorové mikroprostředí genetika MeSH
- nádory genetika patologie prevence a kontrola terapie MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- fytogenní protinádorové látky MeSH