The Use of Biomarkers in Early Diagnostics of Pancreatic Cancer
Jazyk angličtina Země Egypt Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
30186820
PubMed Central
PMC6112218
DOI
10.1155/2018/5389820
Knihovny.cz E-zdroje
- MeSH
- analýza přežití MeSH
- časná detekce nádoru metody MeSH
- dospělí MeSH
- duktální karcinom slinivky břišní krev diagnóza mortalita chirurgie MeSH
- hodnocení rizik MeSH
- invazivní růst nádoru patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery krev MeSH
- nádory slinivky břišní krev diagnóza mortalita chirurgie MeSH
- pankreatektomie metody MeSH
- přežití bez známek nemoci MeSH
- prognóza MeSH
- senioři MeSH
- staging nádorů MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- nádorové biomarkery MeSH
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies with increasing incidence. The poor prognosis is due to the aggressive nature of the tumor, late detection, and the resistance to chemotherapy and radiotherapy. A radical surgery procedure is the only treatment that has been shown to improve the 5-year survival rate to 20-25%. However, the majority of patients (80-85%) are diagnosed with locally advanced or metastatic disease and just 15-20% patients are diagnosed in an early stage allowing them to undergo the potentially curative surgical resection. The early detection of PDAC without the use of invasive methods is challenging and discovery of a cost-effective biomarker with high specificity and sensitivity could significantly improve the treatment and survival in these patients. In this review, we summarize current and newly examined biomarkers in early PDAC detection.
Zobrazit více v PubMed
Humphris J. L., Chang D. K., Johns A. L., et al. The prognostic and predictive value of serum CA19.9 in pancreatic cancer. Annals of Oncology. 2012;23(7):1713–1722. doi: 10.1093/annonc/mdr561.mdr561 PubMed DOI PMC
Yako Y. Y., Kruger D., Smith M., Brand M. Cytokines as biomarkers of pancreatic ductal adenocarcinoma: A systematic review. PLoS ONE. 2016;11(5) PubMed PMC
Wang J., Raimondo M., Guha S., et al. Circulating microRNAs in pancreatic juice as candidate biomarkers of pancreatic cancer. Journal of Cancer. 2014;5(8):696–705. doi: 10.7150/jca.10094. PubMed DOI PMC
Siegel R. L., Miller K. D., Jemal A. Cancer statistics, 2018. CA: A Cancer Journal for Clinicians. 2018;68(1):7–30. doi: 10.3322/caac.21442. PubMed DOI
Yu I. S., Cheung W. Y. A Contemporary Review of the Treatment Landscape and the Role of Predictive and Prognostic Biomarkers in Pancreatic Adenocarcinoma. Canadian Journal of Gastroenterology and Hepatology. 2018;2018:10. doi: 10.1155/2018/1863535.1863535 PubMed DOI PMC
Hernandez Y. G. MicroRNA in pancreatic ductal adenocarcinoma and its precursor lesions. World Journal of Gastrointestinal Oncology. 2016;8(1):18–29. doi: 10.4251/wjgo.v8.i1.18. PubMed DOI PMC
Falasca M., Kim M., Casari I. Pancreatic cancer: Current research and future directions. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2016;1865(2):123–132. doi: 10.1016/j.bbcan.2016.01.001. PubMed DOI
Gharibi A., Adamian Y., Kelber J. A. Cellular and molecular aspects of pancreatic cancer. Acta Histochemica. 2016;118(3):305–316. doi: 10.1016/j.acthis.2016.01.009. PubMed DOI PMC
Zhang X., Shi S., Zhang B., Ni Q., Yu X., Xu J. Circulating biomarkers for early diagnosis of pancreatic cancer: facts and hopes. Am J Cancer Res. 2018;8(3):332–53. PubMed PMC
Conroy T., Bachet J.-B., Ayav A., et al. Current standards and new innovative approaches for treatment of pancreatic cancer. European Journal of Cancer. 2016;57:10–22. doi: 10.1016/j.ejca.2015.12.026. PubMed DOI
Loosen S. H., Neumann U. P., Trautwein C., Roderburg C., Luedde T. Current and future biomarkers for pancreatic adenocarcinoma. Tumor Biology. 2017;39(6):p. 101042831769223. doi: 10.1177/1010428317692231. PubMed DOI
Zhou B., Xu J.-W., Cheng Y.-G., et al. Early detection of pancreatic cancer: Where are we now and where are we going? International Journal of Cancer. 2017;141(2):231–241. doi: 10.1002/ijc.30670. PubMed DOI
Lewis A. R., Valle J. W., McNamara M. G. Pancreatic cancer: Are "liquid biopsies" ready for prime-time? World Journal of Gastroenterology. 2016;22(32):7175–7185. doi: 10.3748/wjg.v22.i32.7175. PubMed DOI PMC
Klein F., Jacob D., Bahra M., et al. Prognostic factors for long-term survival in patients with ampullary carcinoma: The results of a 15-year observation period after pancreaticoduodenectomy. HPB Surgery. 2014;2014 PubMed PMC
Kunovsky L., Kala Z., Prochazka V., et al. Surgical treatment of ampullary adenocarcinoma – single center experience and a review of literature. Klinicka Onkologie. 2018;31(1):46–52. PubMed
Le Large T. Y. S., Meijer L. L., Mato Prado M., Kazemier G., Frampton A. E., Giovannetti E. Circulating microRNAs as diagnostic biomarkers for pancreatic cancer. Expert Review of Molecular Diagnostics. 2015;15(12):1525–1529. doi: 10.1586/14737159.2015.1112273. PubMed DOI
Herreros-Villanueva M., Bujanda L. Non-invasive biomarkers in pancreatic cancer diagnosis: What we need versus what we have. Annals of Translational Medicine. 2016;4(7) PubMed PMC
Zhang Y., Yang J., Li H., Wu Y., Zhang H., Chen W. Tumor markers CA19-9, CA242 and CEA in the diagnosis of pancreatic cancer: a meta-analysis. International Journal of Clinical and Experimental Medicine. 2015;8(7):11683–11691. PubMed PMC
Kaur S., Baine M. J., Jain M., Sasson A. R., Batra S. K. Early diagnosis of pancreatic cancer: Challenges and new developments. Biomarkers in Medicine. 2012;6(5):597–612. doi: 10.2217/bmm.12.69. PubMed DOI PMC
Locker G. Y., Hamilton S., Harris J., et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. Journal of Clinical Oncology. 2006;24(33):5313–5327. doi: 10.1200/JCO.2006.08.2644. PubMed DOI
Kau S.-Y., Shyr Y.-M., Su C.-H., Wu C.-W., Lui W.-Y. Diagnostic and prognostic values of CA 19-9 and CEA in periampullary cancers. Journal of the American College of Surgeons. 1999;188(4):415–420. doi: 10.1016/S1072-7515(98)00326-3. PubMed DOI
Goonetilleke K. S., Siriwardena A. K. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. European Journal of Surgical Oncology. 2007;33(3):266–270. doi: 10.1016/j.ejso.2006.10.004. PubMed DOI
Goggins M. Molecular markers of early pancreatic cancer. Journal of Clinical Oncology. 2005;23(20):4524–4531. doi: 10.1200/JCO.2005.19.711. PubMed DOI
Yue T., Maupin K. A., Fallon B., et al. Enhanced Discrimination of Malignant from Benign Pancreatic Disease by Measuring the CA 19-9 Antigen on Specific Protein Carriers. PLoS ONE. 2011;6(12):p. e29180. doi: 10.1371/journal.pone.0029180. PubMed DOI PMC
Meng Q., Shi S., Liang C., et al. Diagnostic and prognostic value of carcinoembryonic antigen in pancreatic cancer: A systematic review and meta-analysis. OncoTargets and Therapy. 2017;10:4591–4598. doi: 10.2147/OTT.S145708. PubMed DOI PMC
Lee H. S., Jang C. Y., Kim S. A., et al. Combined use of CEMIP and CA 19-9 enhances diagnostic accuracy for pancreatic cancer. Scientific Reports. 2018;8(1) doi: 10.1038/s41598-018-21823-x. PubMed DOI PMC
Ritchie S. A., Chitou B., Zheng Q., et al. Pancreatic cancer serum biomarker PC-594: diagnostic performance and comparison to CA19-9. World Journal of Gastroenterology. 2015;21(21):6604–6612. doi: 10.3748/wjg.v21.i21.6604. PubMed DOI PMC
Sogawa K., Takano S., Iida F., et al. Identification of a novel serum biomarker for pancreatic cancer, C4b-binding protein α-chain (C4BPA) by quantitative proteomic analysis using tandem mass tags. British Journal of Cancer. 2016;115(8):949–956. doi: 10.1038/bjc.2016.295. PubMed DOI PMC
Yoneyama T., Ohtsuki S., Honda K., et al. Identification of IGFBP2 and IGFBP3 As Compensatory Biomarkers for CA19-9 in Early-Stage Pancreatic Cancer Using a Combination of Antibody-Based and LC-MS/MS-Based Proteomics. PLoS ONE. 2016;11(8):p. e0161009. doi: 10.1371/journal.pone.0161009. PubMed DOI PMC
Novotný I., Dítě P., Dastych M., et al. Tumor marker M2-pyruvate-kinase in differential diagnosis of chronic pancreatitis and pancreatic cancer. Hepato-Gastroenterology. 2008;55(85):1475–1477. PubMed
Joergensen M. T., Heegaard N. H. H., Schaffalitzky De Muckadell O. B. Comparison of plasma Tu-M2-PK and CA19-9 in pancreatic cancer. Pancreas. 2010;39(2):243–247. doi: 10.1097/MPA.0b013e3181bae8ab. PubMed DOI
Bandara I. A., Baltatzis M., Sanyal S., Siriwardena A. K. Evaluation of tumor M2-pyruvate kinase (Tumor M2-PK) as a biomarker for pancreatic cancer. World Journal of Surgical Oncology. 2018;16(1) doi: 10.1186/s12957-018-1360-3. PubMed DOI PMC
Goonetilleke K. S., Mason J. M., Siriwardana P., King N. K., France M. W., Siriwardena A. K. Diagnostic and prognostic value of plasma tumor M2 pyruvate kinase in periampullary cancer: Evidence for a novel biological marker of adverse prognosis. Pancreas. 2007;34(3):318–324. doi: 10.1097/MPA.0b013e31802ee9c7. PubMed DOI
Di Gangi I. M., Mazza T., Fontana A., et al. Metabolomic profile in pancreatic cancer patients: A consensusbased approach to identify highly discriminating metabolites. Oncotarget . 2016;7(5):5815–5829. PubMed PMC
Sakai A., Suzuki M., Kobayashi T., et al. Pancreatic cancer screening using a multiplatform human serum metabolomics system. Biomarkers in Medicine. 2016;10(6):577–586. doi: 10.2217/bmm-2016-0020. PubMed DOI
Mayerle J., Kalthoff H., Reszka R., et al. Metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Gut. 2018;67(1):128–137. doi: 10.1136/gutjnl-2016-312432corr1. PubMed DOI PMC
Kamisawa T., Zen Y., Pillai S., Stone J. H. IgG4-related disease. The Lancet. 2014 doi: 10.1016/s0140-6736(14)60720-0. PubMed DOI
Hart P. A., Zen Y., Chari S. T. Recent advances in autoimmune pancreatitis. Gastroenterology. 2015 doi: 10.1053/j.gastro.2015.03.010. PubMed DOI
Dítě P., Novotný I., Kala Z., et al. The serological positivity of immunoglobulin IgG4 in patients with pancreatic carcinoma. Gastroenterologie a Hepatologie. 2012;66(3):187–190.
Ngwa T., Law R., Hart P., Smyrk T. C., Chari S. T. Serum IgG4 elevation in pancreatic cancer: diagnostic and prognostic significance and association with autoimmune pancreatitis. Pancreas. 2015;44(4):557–560. doi: 10.1097/mpa.0000000000000297. PubMed DOI
Dai C., Cao Q., Jiang M., Sun M.-J. Serum Immunoglobulin G4 in Discriminating Autoimmune Pancreatitis from Pancreatic Cancer: A Diagnostic Meta-analysis. Pancreas. 2018;47(3):280–284. PubMed
Liu Q., Niu Z., Li Y., et al. Immunoglobulin G4 (IgG4)-positive plasma cell infiltration is associated with the clinicopathologic traits and prognosis of pancreatic cancer after curative resection. Cancer Immunology, Immunotherapy. 2016;65(8):931–940. doi: 10.1007/s00262-016-1853-2. PubMed DOI PMC
Özkan H., Demirbaş S., Ibiş M., Akbal E., Köklü S. Diagnostic validity of serum macrophage inhibitor cytokine and tissue polypeptide-specific antigen in pancreatobiliary diseases. Pancreatology. 2011;11(3):295–300. doi: 10.1159/000328963. PubMed DOI
Kaur S., Chakraborty S., Baine M. J., et al. Potentials of Plasma NGAL and MIC-1 as Biomarker(s) in the Diagnosis of Lethal Pancreatic Cancer. PLoS ONE. 2013;8(2):p. e55171. doi: 10.1371/journal.pone.0055171. PubMed DOI PMC
Baine M. J., Menning M., Smith L. M., et al. Differential gene expression analysis of peripheral blood mononuclear cells reveals novel test for early detection of pancreatic cancer. Cancer Biomarkers. 2011;11(1):1–14. doi: 10.3233/CBM-2012-0260. PubMed DOI PMC
Yang Y., Yan S., Tian H., Bao Y. Macrophage inhibitory cytokine-1 versus carbohydrate antigen 19-9 as a biomarker for diagnosis of pancreatic cancer. Medicine (United States) 2018;97(9) PubMed PMC
Wang X., Li Y., Tian H., et al. Macrophage inhibitory cytokine 1 (MIC-1/GDF15) as a novel diagnostic serum biomarker in pancreatic ductal adenocarcinoma. BMC Cancer. 2014;14, article 578 doi: 10.1186/1471-2407-14-578. PubMed DOI PMC
Peng J.-F., Zhuang Y.-Y., Huang F.-T., Zhang S.-N. Noncoding RNAs and pancreatic cancer. World Journal of Gastroenterology. 2016;22(2):801–814. doi: 10.3748/wjg.v22.i2.801. PubMed DOI PMC
Kishikawa T., Otsuka M., Ohno M., Yoshikawa T., Takata A., Koike K. Circulating RNAs as new biomarkers for detecting pancreatic cancer. World Journal of Gastroenterology. 2015;21(28):8527–8540. doi: 10.3748/wjg.v21.i28.8527. PubMed DOI PMC
Liu J., Gao J., Du Y., et al. Combination of plasma microRNAs with serum CA19-9 for early detection of pancreatic cancer. International Journal of Cancer. 2012;131(3):683–691. doi: 10.1002/ijc.26422. PubMed DOI
Schultz N. A., Dehlendorff C., Jensen B. V., et al. MicroRNA biomarkers in whole blood for detection of pancreatic cancer. Journal of the American Medical Association. 2014;311(4):392–404. doi: 10.1001/jama.2013.284664. PubMed DOI
Xu J., Cao Z., Liu W. Plasma miRNAs effectively distinguish patients with pancreatic cancer from controls: a multicenter study. Annals of Surgery. 2015 doi: 10.1097/SLA.0000000000001345. PubMed DOI
Vychytilova-Faltejskova P., Kiss I., Klusova S., et al. MiR-21, miR-34a, miR-198 and miR-217 as diagnostic and prognostic biomarkers for chronic pancreatitis and pancreatic ductal adenocarcinoma. Diagnostic Pathology. 2015;10(1, article no. 38) doi: 10.1186/s13000-015-0272-6. PubMed DOI PMC
Bloomston M., Frankel W. L., Petrocca F., et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. Journal of the American Medical Association. 2007;297(17):1901–1908. doi: 10.1001/jama.297.17.1901. PubMed DOI
Hanoun N., Delpu Y., Suriawinata A. A., et al. The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis. Clinical Chemistry. 2010;56(7):1107–1118. doi: 10.1373/clinchem.2010.144709. PubMed DOI
Ulitsky I., Bartel D. P. XLincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154(1):26–46. doi: 10.1016/j.cell.2013.06.020. PubMed DOI PMC
Quinn J. J., Chang H. Y. Unique features of long non-coding RNA biogenesis and function. Nature Reviews Genetics. 2015;17(1):47–62. doi: 10.1038/nrg.2015.10. PubMed DOI
Ren S., Wang F., Shen J., et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. European Journal of Cancer. 2013;49(13):2949–2959. doi: 10.1016/j.ejca.2013.04.026. PubMed DOI
Yuan W., Sun Y., Liu L., Zhou B., Wang S., Gu D. Circulating LncRNAs Serve as Diagnostic Markers for Hepatocellular Carcinoma. Cellular Physiology and Biochemistry. 2017:125–132. doi: 10.1159/000484589. PubMed DOI
Zhao W., Song M., Zhang J., Kuerban M., Wang H. Combined identification of long non-coding RNA CCAT1 and HOTAIR in serum as an effective screening for colorectal carcinoma. International Journal of Clinical and Experimental Pathology. 2015;8(11):14131–14140. PubMed PMC
Tantai J., Hu D., Yang Y., Geng J. Erratum to "Combined identification of long non-coding RNA XIST and HIF1A-AS1 in serum as an effective screening for non-small cell lung cancer" [Int J Clin Exp Pathol., 8, 7, (2015), 7887-7895] International Journal of Clinical and Experimental Pathology. 2016;9(3):p. 4157. PubMed PMC
Scaiewicz V., Sorin V., Fellig Y., et al. Use of H19 Gene Regulatory Sequences in DNA-Based Therapy for Pancreatic Cancer. Journal of Oncology. 2010;2010:10. doi: 10.1155/2010/178174.178174 PubMed DOI PMC
Kim K., Jutooru I., Chadalapaka G., et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene. 2013;32(13):1616–1625. doi: 10.1038/onc.2012.193. PubMed DOI PMC
Fu Z., Chen C., Zhou Q., et al. LncRNA HOTTIP modulates cancer stem cell properties in human pancreatic cancer by regulating HOXA9. Cancer Letters. 2017;410:68–81. doi: 10.1016/j.canlet.2017.09.019. PubMed DOI
Jiao F., Hu H., Yuan C., et al. Elevated expression level of long noncoding RNA MALAT-1 facilitates cell growth, migration and invasion in pancreatic cancer. Oncology Reports. 2014;32(6):2485–2492. doi: 10.3892/or.2014.3518. PubMed DOI
Wang Y., Li Z., Zheng S., et al. Expression profile of long non-coding RNAs in pancreatic cancer and their clinical significance as biomarkers. Oncotarget . 2015;6(34):35684–35698. doi: 10.18632/oncotarget.5533. PubMed DOI PMC
Xie Z., Chen X., Li J., et al. Salivary HOTAIR and PVT1 as novel biomarkers for early pancreatic cancer. Oncotarget . 2016;7(18):25408–25419. PubMed PMC
Riva F., Dronov O. I., Khomenko D. I., et al. Clinical applications of circulating tumor DNA and circulating tumor cells in pancreatic cancer. Molecular Oncology. 2016;10(3):481–493. doi: 10.1016/j.molonc.2016.01.006. PubMed DOI PMC
Ashworth T. R. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. The Medical Journal of Australia. 1869;14:146–149.
Gupta G. P., Massagué J. Cancer metastasis: building a framework. Cell. 2006;127(4):679–695. doi: 10.1016/j.cell.2006.11.001. PubMed DOI
Rhim A. D., Mirek E. T., Aiello N. M., et al. EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148(1-2):349–361. doi: 10.1016/j.cell.2011.11.025. PubMed DOI PMC
Iwanicki-Caron I., Basile P., Toure E., et al. Usefulness of Circulating Tumor Cell Detection in Pancreatic Adenocarcinoma Diagnosis. American Journal of Gastroenterology. 2013;108(1):152–155. doi: 10.1038/ajg.2012.367. PubMed DOI
Kulemann B., Pitman M. B., Liss A. S., et al. Circulating tumor cells found in patients with localized and advanced pancreatic cancer. Pancreas. 2015;44(4):547–550. doi: 10.1097/MPA.0000000000000324. PubMed DOI
Gao Y., Zhu Y., Zhang Z., Zhang C., Huang X., Yuan Z. Clinical significance of pancreatic circulating tumor cells using combined negative enrichment and immunostaining-fluorescence in situ hybridization. Journal of Experimental & Clinical Cancer Research. 2016;35(1) doi: 10.1186/s13046-016-0340-0. PubMed DOI PMC
Ankeny J. S., Court C. M., Hou S., et al. Circulating tumour cells as a biomarker for diagnosis and staging in pancreatic cancer. British Journal of Cancer. 2016;114(12):1367–1375. doi: 10.1038/bjc.2016.121. PubMed DOI PMC
Imamura T., Komatsu S., Ichikawa D., et al. Liquid biopsy in patients with pancreatic cancer: Circulating tumor cells and cell-free nucleic acids. World Journal of Gastroenterology. 2016;22(25):5627–5641. doi: 10.3748/wjg.v22.i25.5627. PubMed DOI PMC
Mandel P., Metais P. Les acides nucleiques du plasma sanguin chez l'homme. Comptes rendus des séances de la Société de biologie et de ses filiales. 1948:142–241. PubMed
Stroun M., Anker P., Maurice P., Lyautey J., Lederrey C., Beljanski M. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology. 1989;46(5):318–322. doi: 10.1159/000226740. PubMed DOI
Takai E., Yachida S. Circulating tumor DNA as a liquid biopsy target for detection of pancreatic cancer. World Journal of Gastroenterology. 2016;22(38):8480–8488. doi: 10.3748/wjg.v22.i38.8480. PubMed DOI PMC
Diehl F., Schmidt K., Choti M. A., et al. Circulating mutant DNA to assess tumor dynamics. Nature Medicine. 2008;14(9):985–990. doi: 10.1038/nm.1789. PubMed DOI PMC
Yanagisawa A., Ohtake K., Ohashi K., et al. Frequent c-Ki-ras Oncogene Activation in Mucous Cell Hyperplasias of Pancreas Suffering from Chronic Inflammation. Cancer Research. 1993;53(5):953–956. PubMed
Gao Y., Zhu Y., Yuan Z. Circulating tumor cells and circulating tumor DNA provide new insights into pancreatic cancer. International Journal of Medical Sciences. 2016;13(12):902–913. doi: 10.7150/ijms.16734. PubMed DOI PMC
Sausen M., Phallen J., Adleff V., et al. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nature Communications. 2015;6(1) doi: 10.1038/ncomms8686. PubMed DOI PMC
Bettegowda C., Sausen M., Leary R., et al. Detection of circulating tumor dna in early and late stage human malignancies. Neuro-Oncology. 2014;16(suppl 3):iii7–iii7. doi: 10.1093/neuonc/nou206.24. PubMed DOI PMC
Tjensvoll K., Lapin M., Buhl T., et al. Clinical relevance of circulating KRAS mutated DNA in plasma from patients with advanced pancreatic cancer. Molecular Oncology. 2016;10(4):635–643. doi: 10.1016/j.molonc.2015.11.012. PubMed DOI PMC
Chen H., Tu H., Meng Z. Q., Chen Z., Wang P., Liu L. M. K-ras mutational status predicts poor prognosis in unresectable pancreatic cancer. European Journal of Surgical Oncology. 2010;36(7):657–662. doi: 10.1016/j.ejso.2010.05.014. PubMed DOI
Marchese R., Muleti A., Brozzetti S., Gandini O., Brunetti E., French D. Low value of detection of KRAS2 mutations in circulating DNA to differentiate chronic pancreatitis to pancreatic cancer [1] British Journal of Cancer. 2004;90(11):p. 2243. doi: 10.1038/sj.bjc.6601854. PubMed DOI PMC
Maire F., Micard S., Hammel P., et al. Differential diagnosis between chronic pancreatitis and pancreatic cancer: Value of the detection of KRAS2 mutations in circulating DNA. British Journal of Cancer. 2002;87(5):551–554. doi: 10.1038/sj.bjc.6600475. PubMed DOI PMC
Sefrioui D., Blanchard F., Toure E., et al. Diagnostic value of CA19.9, circulating tumour DNA and circulating tumour cells in patients with solid pancreatic tumours. British Journal of Cancer. 2017;117(7):1017–1025. doi: 10.1038/bjc.2017.250. PubMed DOI PMC
Melo S. A., Luecke L. B., Kahlert C., et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015 doi: 10.1038/nature14581. PubMed DOI PMC
Melo S., Sugimoto H., O’Connell J., et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26(5):707–721. doi: 10.1016/j.ccell.2014.09.005. PubMed DOI PMC
Lau C., Kim Y., Chia D., et al. Role of pancreatic cancer-derived exosomes in salivary biomarker development. The Journal of Biological Chemistry. 2013;288(37):26888–26897. doi: 10.1074/jbc.m113.452458. PubMed DOI PMC
Humeau M., Vignolle-Vidoni A., Sicard F., et al. Salivary microRNA in pancreatic cancer patients. PLoS ONE. 2015;10(6) PubMed PMC
Radon T. P., Massat N. J., Jones R., et al. Identification of a three-biomarker panel in urine for early detection of pancreatic adenocarcinoma. Clinical Cancer Research. 2015;21(15):3512–3521. doi: 10.1158/1078-0432.CCR-14-2467. PubMed DOI PMC
Hogendorf P., Durczyński A., Skulimowski A., Kumor A., Poznańska G., Strzelczyk J. Neutrophil Gelatinase-Associated Lipocalin (NGAL) concentration in urine is superior to CA19-9 and Ca 125 in differentiation of pancreatic mass: Preliminary report. Cancer Biomarkers. 2016;16(4):537–543. doi: 10.3233/CBM-160595. PubMed DOI
Debernardi S., Massat N. J., Radon T. P., et al. Noninvasive urinary miRNA biomarkers for early detection of pancreatic adenocarcinoma. American Journal of Cancer Research. 2015;5(11):3455–3466. PubMed PMC
Huo Y., Yang M., Liu W., et al. High expression of DDR1 is associated with the poor prognosis in Chinese patients with pancreatic ductal adenocarcinoma. Journal of Experimental & Clinical Cancer Research. 2015;34(1) doi: 10.1186/s13046-015-0202-1. PubMed DOI PMC
Veite-Schmahl M. J., Rivers A. C., Regan D. P., Kennedy M. A. The Mouse Model of Pancreatic Cancer Atlas (MMPCA) for classification of pancreatic cancer lesions: A large histological investigation of the Ptf1aCre/+;LSL-KrasG12D/+ transgenic mouse model of pancreatic cancer. PLoS ONE. 2017;12(11) PubMed PMC
Scarlett C., Weidenhofer J., Colvin E., Bond D. Animal models of pancreatic cancer and their application in clinical research. Gastrointestinal Cancer : Targets and Therapy. 2016;Volume 6:31–39. doi: 10.2147/GICTT.S84531. DOI
Hingorani S. R., Petricoin E. F., III, Maitra A., et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4(6):437–450. doi: 10.1016/s1535-6108(03)00309-x. PubMed DOI