Histones are positively charged proteins found in the chromatin of eukaryotic cells. They regulate gene expression and are required for the organization and packaging of DNA within the nucleus. Histones are extremely conserved, allowing for transcription, replication, and repair. This review delves into their complex structure and function in DNA assembly, their role in nucleosome assembly, and the higher-order chromatin structures they generate. We look at the five different types of histone proteins: H1, H2A, H2B, H3, H4, and their variations. These histones bind with DNA to produce nucleosomes, the basic units of chromatin that are essential for compacting DNA and controlling its accessibility. Their dynamic control of chromatin accessibility has important implications for genomic stability and cellular activities. We elucidate regulatory mechanisms in both normal and pathological situations by investigating their structural features, diverse interaction mechanisms, and chromatin impact. In addition, we discuss the functions of histone post-translational modifications (PTMs) and their significance in various disorders. These alterations, which include methylation, acetylation, phosphorylation, and ubiquitination, are crucial in regulating histone function and chromatin dynamics. We specifically describe and explore the role of changed histones in the evolution of cancer, neurological disorders, sepsis, autoimmune illnesses, and inflammatory conditions. This comprehensive review emphasizes histone's critical role in genomic integrity and their potential as therapeutic targets in various diseases.
- Klíčová slova
- Chromatin, Disease, Gene expression, Genomic stability, Histones, Nucleosomes, Post-translational modifications (PTMs),
- MeSH
- chromatin metabolismus genetika chemie MeSH
- DNA * metabolismus chemie MeSH
- genom MeSH
- histony * metabolismus chemie genetika MeSH
- lidé MeSH
- nádory genetika metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- chromatin MeSH
- DNA * MeSH
- histony * MeSH
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
- Klíčová slova
- Apoptosis, Cancer stem cells, Heterogeneity, Immunosurveillance, Metabolism, Metastasis, Plasticity, Quiescence, Self-renewal, Tumor microenvironment,
- MeSH
- lidé MeSH
- nádorové kmenové buňky * patologie metabolismus MeSH
- nádorové mikroprostředí * MeSH
- nádory * patologie genetika metabolismus terapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The development of metastasis is a leading cause of cancer-related death that involves specific changes in the plasma membrane (PM) and nucleus of cancer cells. Elevated levels of membrane lipids, including sphingomyelin, cholesterol, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), in the PM, contribute to changes in membrane rigidity, lipid raft formation, and actin polymerisation dynamics, processes that drive cell invasion. This review discusses the relationship between well-studied cytoplasmic phosphoinositides and their lesser-known nuclear counterparts, highlighting their functional role in metastatic progression. Nuclear phosphoinositides, particularly PI(4,5)P2, are essential for regulating transcription factors and chromatin organisation, thereby shaping gene expression patterns. We also explore the role of PI(4,5)P2 and its metabolism in cancer cell invasiveness and metastasis, proposing a model in which the dysregulation of cytosolic and/or nuclear PI(4,5)P2 pool triggers malignant transformation. Understanding the PI(4,5)P2-related mechanisms underlying metastasis may provide insights into potential therapeutic targets, paving the way for more effective therapies and improved patient outcomes.
- Klíčová slova
- Biocondensates, Cancer, HPV, Metastasis, Nucleus, Phosphatidylinositol 4,5-bisphosphate,
- MeSH
- buněčná membrána * metabolismus MeSH
- buněčné jádro * metabolismus MeSH
- fosfatidylinositol-4,5-difosfát * metabolismus MeSH
- lidé MeSH
- membránové mikrodomény metabolismus MeSH
- metastázy nádorů MeSH
- nádory * metabolismus patologie genetika MeSH
- signální transdukce * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fosfatidylinositol-4,5-difosfát * MeSH
Mitochondria are vital organelles with their own DNA (mtDNA). mtDNA is circular and composed of heavy and light chains that are structurally more accessible than nuclear DNA (nDNA). While nDNA is typically diploid, the number of mtDNA copies per cell is higher and varies considerably during development and between tissues. Compared with nDNA, mtDNA is more prone to damage that is positively linked to many diseases, including cancer. Similar to nDNA, mtDNA undergoes repair processes, although these mechanisms are less well understood. In this review, we discuss the various forms of mtDNA damage and repair and their association with cancer initiation and progression. We also propose horizontal mitochondrial transfer as a novel mechanism for replacing damaged mtDNA.
- Klíčová slova
- DNA stability, base excision repair, cancer, horizontal mitochondrial transfer, mitochondrial DNA, mitochondrial DNA damage repair, nuclear DNA,
- MeSH
- lidé MeSH
- mitochondriální DNA * genetika MeSH
- mitochondrie * genetika metabolismus MeSH
- nádory * genetika patologie MeSH
- oprava DNA * MeSH
- poškození DNA * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mitochondriální DNA * MeSH
TP73 is a member of the TP53 gene family and produces N- and C-terminal protein isoforms through alternative promoters, alternative translation initiation and alternative splicing. Most notably, p73 protein isoforms may either contain a p53-like transactivation domain (TAp73 isoforms) or lack this domain (ΔTAp73 isoforms) and these variants have opposing or independent functions. To date, there is a lack of well-characterised isoform-specific p73 antibodies. Here, we produced polyclonal and monoclonal antibodies to N-terminal p73 variants and the C-terminal p73α isoform, the most common variant in human tissues. These reagents show that TAp73 is a marker of multiciliated epithelial cells, while ΔTAp73 is a marker of non-proliferative basal/reserve cells in squamous epithelium. We were unable to detect ΔNp73 variant proteins, in keeping with recent data that this is a minor form in human tissues. Most cervical squamous cell carcinomas (79%) express p73α, and the distribution of staining in basal cells correlated with lower tumour grade. TAp73 was found in 17% of these tumours, with a random distribution and no association with clinicopathological features. These data indicate roles for ΔTAp73 in maintaining a non-proliferative state of undifferentiated squamous epithelial cells and for TAp73 in the production of differentiated multiciliated cells.
- Klíčová slova
- Cervical cancer, Endometrium, Fallopian tube, Multiciliated cells, Squamous epithelial stem cells, p73 isoforms,
- MeSH
- epitelové buňky metabolismus MeSH
- lidé MeSH
- monoklonální protilátky MeSH
- nádorové buněčné linie MeSH
- nádory děložního čípku metabolismus patologie genetika MeSH
- nádory metabolismus patologie genetika MeSH
- protein - isoformy * metabolismus genetika MeSH
- protein p73 * metabolismus genetika MeSH
- spinocelulární karcinom metabolismus patologie genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- delta Np73 protein, human MeSH Prohlížeč
- monoklonální protilátky MeSH
- protein - isoformy * MeSH
- protein p73 * MeSH
- TP73 protein, human MeSH Prohlížeč
Despite significant improvement in the survival of pediatric patients with cancer, treatment outcomes for high-risk, relapsed, and refractory cancers remain unsatisfactory. Moreover, prolonged survival is frequently associated with long-term adverse effects due to intensive multimodal treatments. Accelerating the progress of pediatric oncology requires both therapeutic advances and strategies to mitigate the long-term cytotoxic side effects, potentially through targeting specific molecular drivers of pediatric malignancies. In this report, we present the results of integrative genomic and transcriptomic profiling of 230 patients with malignant solid tumors (the "primary cohort") and 18 patients with recurrent or otherwise difficult-to-treat nonmalignant conditions (the "secondary cohort"). The integrative workflow for the primary cohort enabled the identification of clinically significant single nucleotide variants, small insertions/deletions, and fusion genes, which were found in 55% and 28% of patients, respectively. For 38% of patients, molecularly informed treatment recommendations were made. In the secondary cohort, known or potentially driving alteration was detected in 89% of cases, including a suspected novel causal gene for patients with inclusion body infantile digital fibromatosis. Furthermore, 47% of findings also brought therapeutic implications for subsequent management. Across both cohorts, changes or refinements to the original histopathological diagnoses were achieved in 4% of cases. Our study demonstrates the efficacy of integrating advanced genomic and transcriptomic analyses to identify therapeutic targets, refine diagnoses, and optimize treatment strategies for challenging pediatric and young adult malignancies and underscores the need for broad implementation of precision oncology in clinical settings.
- Klíčová slova
- next-generation sequencing, pediatric oncology, precision medicine,
- MeSH
- dítě MeSH
- genomika * metody MeSH
- individualizovaná medicína * metody MeSH
- kohortové studie MeSH
- kojenec MeSH
- lékařská onkologie metody MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nádory * genetika terapie MeSH
- předškolní dítě MeSH
- stanovení celkové genové exprese MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The MRE11, RAD50, and NBN genes encode the MRN complex sensing DNA breaks and directing their repair. While carriers of biallelic germline pathogenic variants (gPV) develop rare chromosomal instability syndromes, the cancer risk in heterozygotes remains controversial. We performed a systematic review and meta-analysis of 53 studies in patients with different cancer diagnoses to better understand the cancer risk. We found an increased risk (odds ratio, 95% confidence interval) for gPV carriers in NBN for melanoma (7.14; 3.30-15.43), pancreatic cancer (4.03; 2.14-7.58), hematological tumors (3.42; 1.14-10.22), and prostate cancer (2.44, 1.84-3.24), but a low risk for breast cancer (1.29; 1.00-1.66) and an insignificant risk for ovarian cancer (1.53; 0.76-3.09). We found no increased breast cancer risk in carriers of gPV in RAD50 (0.93; 0.74-1.16; except of c.687del carriers) and MRE11 (0.87; 0.66-1.13). The secondary burden analysis compared the frequencies of gPV in MRN genes in patients from 150 studies with those in the gnomAD database. In NBN gPV carriers, this analysis additionally showed a high risk for brain tumors (5.06; 2.39-9.52), a low risk for colorectal (1.64; 1.26-2.10) and hepatobiliary (2.16; 1.02-4.06) cancers, and no risk for endometrial, and gastric cancer. The secondary burden analysis showed also a moderate risk for ovarian cancer (3.00; 1.27-6.08) in MRE11 gPV carriers, and no risk for ovarian and hepatobiliary cancers in RAD50 gPV carriers. These findings provide a robust clinical evidence of cancer risks to guide personalized clinical management in heterozygous carriers of gPV in the MRE11, RAD50, and NBN genes.
- Klíčová slova
- MRE11, NBN, RAD50, germline variants, meta‐analysis,
- MeSH
- DNA vazebné proteiny genetika MeSH
- enzymy opravy DNA genetika MeSH
- genetická predispozice k nemoci * MeSH
- homologní protein MRE11 * genetika MeSH
- hydrolasy působící na anhydridy kyselin * genetika MeSH
- jaderné proteiny * genetika MeSH
- lidé MeSH
- nádory * genetika MeSH
- proteiny buněčného cyklu * genetika MeSH
- zárodečné mutace * MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- systematický přehled MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- enzymy opravy DNA MeSH
- homologní protein MRE11 * MeSH
- hydrolasy působící na anhydridy kyselin * MeSH
- jaderné proteiny * MeSH
- MRE11 protein, human MeSH Prohlížeč
- NBN protein, human MeSH Prohlížeč
- proteiny buněčného cyklu * MeSH
- RAD50 protein, human MeSH Prohlížeč
Human phosphoglycerate kinase 1(hPGK1) is a key glycolytic enzyme that regulates the balance between ADP and ATP concentrations inside the cell. Phosphorylation of hPGK1 at S203 and S256 has been associated with enzyme import from the cytosol to the mitochondria and the nucleus respectively. These changes in subcellular locations drive tumorigenesis and are likely associated with site-specific changes in protein stability. In this work, we investigate the effects of site-specific phosphorylation on thermal and kinetic stability and protein structural dynamics by hydrogen-deuterium exchange (HDX) and molecular dynamics (MD) simulations. We also investigate the binding of 3-phosphoglycerate and Mg-ADP using these approaches. We show that the phosphomimetic mutation S256D reduces hPGK1 kinetic stability by 50-fold, with no effect of the mutation S203D. Calorimetric studies of ligand binding show a large decrease in affinity for Mg-ADP in the S256D variant, whereas Mg-ADP binding to the WT and S203D can be accurately investigated using protein kinetic stability and binding thermodynamic models. HDX and MD simulations confirmed the destabilization caused by the mutation S256D (with some long-range effects on stability) and its reduced affinity for Mg-ADP due to the strong destabilization of its binding site (particularly in the apo-state). Our research provides evidence suggesting that modifications in protein stability could potentially enhance the translocation of hPGK1 to the nucleus in cancer. While the structural and energetic basis of its mitochondrial import remain unknown.
- Klíčová slova
- cancer, ligand binding, phosphoglycerate kinase, protein phosphorylation, protein stability,
- MeSH
- adenosindifosfát metabolismus MeSH
- cytosol * metabolismus MeSH
- fosfoglycerátkinasa * metabolismus genetika chemie MeSH
- fosforylace MeSH
- kinetika MeSH
- lidé MeSH
- ligandy MeSH
- mutace MeSH
- nádory * genetika metabolismus patologie MeSH
- simulace molekulární dynamiky * MeSH
- stabilita proteinů MeSH
- termodynamika MeSH
- vazba proteinů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosindifosfát MeSH
- fosfoglycerátkinasa * MeSH
- ligandy MeSH
Birds, especially the chick and hen, have been important biomedical research models for centuries due to the accessibility of the avian embryo and the early discovery of avian viruses. Comprehension of avian tumor virology was a milestone in basic cancer research, as was that of non-viral genesis, as it enabled the discovery of oncogenes. Furthermore, studies on avian viruses provided initial insights into Kaposi's sarcoma and EBV-induced diseases. However, the role of birds in human carcinogenesis extends beyond the realm of virology research. Utilization of CAM, the chorioallantoic membrane, an easily accessible extraembryonic tissue with rich vasculature, has enabled studies on tumor-induced angiogenesis and metastasis and the efficient screening of potential anti-cancer compounds. Also, the chick embryo alone is an effective preclinical in vivo patient-derived xenograft model, which is important for the development of personalized therapies. Furthermore, adult birds may also closely resemble human oncogenesis, as evidenced by the laying hen, which is the only animal model of a spontaneous form of ovarian cancer. Avian models may create an interesting alternative compared with mammalian models, enabling the creation of a relatively cost-effective and easy-to-maintain platform to address key questions in cancer biology.
- Klíčová slova
- carcinogenesis, chorioallantoic membrane, hen model, oncoviruses, ovarian cancer,
- MeSH
- karcinogeneze * patologie genetika MeSH
- kur domácí MeSH
- kuřecí embryo MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- nádory patologie genetika MeSH
- ptáci MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- MeSH
- cirkulující nádorová DNA * krev analýza MeSH
- lékařská onkologie metody MeSH
- lidé MeSH
- nádorové biomarkery krev MeSH
- nádory * krev diagnóza genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- úvodníky MeSH
- Názvy látek
- cirkulující nádorová DNA * MeSH
- nádorové biomarkery MeSH