Nejvíce citovaný článek - PubMed ID 17111118
PURPOSE: Post-operative atrial fibrillation (PoAF) occurs in ~ 30% of patients after cardiac surgery. The etiology of PoAF is complex, but a disbalance in autonomic systems plays an important role. The goal of this study was to assess whether pre-operative heart rate variability analysis can predict the risk of PoAF. METHODS: Patients without a history of AF with an indication for cardiac surgery were included. Two-hour ECG recordings one day before surgery was used for the HRV analysis. Univariate and multivariate logistic regression, including all HRV parameters, their combination, and clinical variables, were calculated to find the best predictive model for post-operative AF. RESULTS: One hundred and thirty-seven patients (33 women) were enrolled in the study. PoAF occurred in 48 patients (35%, AF group); the remaining 89 patients were in the NoAF group. AF patients were significantly older (69.1 ± 8.6 vs. 63.4 ± 10.5 yrs., p = 0.002), and had higher CHA2DS2-VASc score (3 ± 1.4 vs. 2.5 ± 1.3, p = 0.01). In the multivariate regression model, parameters independently associated with higher risk of AF were pNN50, TINN, absolute power VLF, LF and HF, total power, SD2, and the Porta index. A combination of clinical variables with HRV parameters in the ROC analysis achieved an AUC of 0.86, a sensitivity of 0.95, and a specificity of 0.57 and was more effective in PoAF prediction than a combination of clinical variables alone. CONCLUSION: A combination of several HRV parameters is helpful in predicting the risk of PoAF. Attenuation of heart rate variability increases the risk for PoAF.
- Klíčová slova
- Cardiac surgery, Heart rate variability, Non-linear analysis, Post-operative atrial fibrillation,
- MeSH
- fibrilace síní * diagnóza epidemiologie etiologie MeSH
- kardiochirurgické výkony * škodlivé účinky MeSH
- lidé MeSH
- pooperační komplikace diagnóza etiologie MeSH
- rizikové faktory MeSH
- ROC křivka MeSH
- srdeční frekvence fyziologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Mobile wireless communication technologies have now become an everyday part of our lives, 24 hours a day, 7 days a week. Monitoring the autonomous system under exposition to electromagnetic fields may play an important role in broading of our still limited knowledge on their effect on human body. Thus, we studied the interaction of the high frequency electromagnetic field (HF EMF) with living body and its effect on the autonomic control of heart rate using Heart Rate Variability (HRV) linear and nonlinear analyses in healthy volunteers. A group of young healthy probands (n=30, age mean: 24.2 ± 3.5 years) without any symptoms of disease was exposed to EMF with f=2400 MHz (Wi Fi), and f=2600 MHz (4G) for 5 minutes applied on the chest area. The short-term heart rate variability (HRV) metrics were used as an indicator of complex cardiac autonomic control. The evaluated HRV parameters: RR interval (ms), high frequency spectral power (HF-HRV in [ln(ms2)]) as an index of cardiovagal control, and a symbolic dynamic index of 0V %, indicating cardiac sympathetic activity. The cardiac-linked parasympathetic index HF-HRV was significantly reduced (p =0.036) and sympathetically mediated HRV index 0V % was significantly higher (p=0.002) during EMF exposure at 2400 MHz (Wi-Fi), compared to simulated 4G frequency 2600 MHz. No significant differences were found in the RR intervals. Our results revealed a shift in cardiac autonomic regulation towards sympathetic overactivity and parasympathetic underactivity indexed by HRV parameters during EMF exposure in young healthy persons. It seems that HF EMF exposure results in abnormal complex cardiac autonomic regulatory integrity which may be associated with higher risk of later cardiovascular complications already in healthy probands.
- MeSH
- autonomní nervový systém MeSH
- dospělí MeSH
- elektromagnetická pole * škodlivé účinky MeSH
- kardiovaskulární nemoci * MeSH
- lidé MeSH
- mladý dospělý MeSH
- rizikové faktory kardiovaskulárních chorob MeSH
- rizikové faktory MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- Publikační typ
- časopisecké články MeSH
Numerous studies indicate a significant role for cytochrome P-450-dependent arachidonic acid metabolites in blood pressure regulation, vascular tone, and control of renal function. Epoxyeicosatrienoic acids (EETs) exhibit a spectrum of beneficial effects, such as vasodilatory activity and anti-inflammatory, anti-fibrotic, and anti-apoptotic properties. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that inhibits sodium reabsorption in the kidney. In the present study, the efficiency of EET-A (a stable analog of 14,15-EET) alone and combined with AAA, a novel receptor antagonist of 20-HETE, was tested in spontaneously hypertensive rats (SHR). Adult SHR (16 weeks old) were treated with two doses of EET-A (10 or 40 mg/kg/day). In the following experiments, we also tested selected substances in the prevention of hypertension development in young SHR (6 weeks old). Young rats were treated with EET-A or the combination of EET-A and AAA (both at 10 mg/kg/day). The substances were administered in drinking water for 4 weeks. Blood pressure was measured by telemetry. Once-a-week observation in metabolic cages was performed; urine, blood, and tissue samples were collected for further analysis. The combined treatment with AAA + EET-A exhibited antihypertensive efficiency in young SHR, which remained normotensive until the end of the observation in comparison to a control group (systolic blood pressure, 134 ± 2 versus 156 ± 5 mmHg, respectively; p < 0.05). Moreover the combined treatment also increased the nitric oxide metabolite excretion. Considering the beneficial impact of the combined treatment with EET-A and AAA in young rats and our previous positive results in adult SHR, we suggest that it is a promising therapeutic strategy not only for the treatment but also for the prevention of hypertension.
- Klíčová slova
- 20-HETE antagonist, EET analog, epoxyeicosatrienoic acids, primary hypertension, spontaneously hypertensive rats,
- Publikační typ
- časopisecké články MeSH
Diabetes mellitus 2 (DM2) is the seventh cause of death worldwide. One of the reasons is late diagnosis of vascular damage. Pulse wave velocity (PWV) has become an independent marker of arterial stiffness and cardiovascular risk. Moreover, the previous studies have shown the importance of beat-to-beat PWV measurement due to its variability among the heart cycle. However, variability of PWV (PWVv) of the whole body hasn't been examined yet. We have studied a group of DM II and heathy volunteers, to investigate the beat-to-beat mean PWV (PWVm) and PWVv in the different body positions. PWV of left lower and upper extremities were measured in DM2 (7 m/8 f, age 68+/-10 years, BP 158/90+/-19/9 mm Hg) and healthy controls (5 m/6 f, age 23+/-2 years, BP 117/76+/-9/5 mm Hg). Volunteers were lying in the resting position and of head-up-tilt in 45° (HUT) for 6 min. PWVv was evaluated as a mean power spectrum in the frequency bands LF and HF (0.04-0.15 Hz, 0.15-0.5 Hz). Resting PWVm of upper extremity was higher in DM2. HUT increased lower extremity PWVm only in DM2. Extremities PWVm ratio was significantly lower in DM2 during HUT compared to controls. LF and HF PWVv had the same response to HUT. Resting PWVv was higher in DM2. Lower extremity PWVv increased during HUT in both groups. PWVm and PWVv in DM2 differed between extremities and were significantly influenced by postural changes due to hydrostatic pressure. Increased resting PWVm and PWVv in DM2 is a marker of increased arterial stiffness.
- MeSH
- analýza pulzové vlny metody MeSH
- diabetes mellitus 2. typu metabolismus patologie MeSH
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- nemoci cév diagnóza metabolismus patologie MeSH
- postura těla fyziologie MeSH
- rychlost toku krve fyziologie MeSH
- senioři MeSH
- srdeční frekvence fyziologie MeSH
- studie případů a kontrol MeSH
- tuhost cévní stěny MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
This study focuses on the determination of the vagal threshold (Tva) during exercise with increasing intensity in normoxia and normobaric hypoxia. The experimental protocol was performed by 28 healthy men aged 20 to 30 years. It included three stages of exercise on a bicycle ergometer with a fraction of inspired oxygen (FiO2) 20.9% (normoxia), 17.3% (simulated altitude ~1500 m), and 15.3% (~2500 m) at intensity associated with 20% to 70% of the maximal heart rate reserve (MHRR) set in normoxia. Tva level in normoxia was determined at exercise intensity corresponding with (M ± SD) 45.0 ± 5.6% of MHRR. Power output at Tva (POth), representing threshold exercise intensity, decreased with increasing degree of hypoxia (normoxia: 114 ± 29 W; FiO2 = 17.3%: 110 ± 27 W; FiO2 = 15.3%: 96 ± 32 W). Significant changes in POth were observed with FiO2 = 15.3% compared to normoxia (p = 0.007) and FiO2 = 17.3% (p = 0.001). Consequentially, normoxic %MHRR adjusted for hypoxia with FiO2 = 15.3% was reduced to 39.9 ± 5.5%. Considering the convenient altitude for exercise in hypoxia, POth did not differ excessively between normoxic conditions and the simulated altitude of ~1500 m, while more substantial decline of POth occurred at the simulated altitude of ~2500 m compared to the other two conditions.
- Klíčová slova
- autonomic nervous system, exercise intensity, saturation, simulated altitude, vagal withdrawal,
- MeSH
- cvičení * fyziologie MeSH
- dospělí MeSH
- hypoxie MeSH
- lidé MeSH
- mladý dospělý MeSH
- nadmořská výška MeSH
- spotřeba kyslíku * MeSH
- zátěžový test MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH