Nejvíce citovaný článek - PubMed ID 17268187
Localization of the single copy gene Mdh2 on Xenopus tropicalis chromosomes by FISH-TSA
Chromosomal rearrangements are fundamental evolutionary drivers leading to genomic diversification. African clawed frogs (genus Xenopus, subgenera Silurana and Xenopus) represent an allopolyploid model system with conserved chromosome numbers in species with the same ploidy within each subgenus. Two significant interchromosomal rearrangements have been identified: a translocation between chromosomes 9 and 2, found in subgenus Silurana, and a fusion between chromosomes 9 and 10, probably widespread in subgenus Xenopus. Here, we study the allotetraploid Xenopus pygmaeus (subgenus Xenopus) based on in-depth karyotype analysis using chromosome measurements and fluorescent in situ hybridization (FISH). We designed FISH probes for genes associated with translocation and fusion to test for the presence of the two main types of rearrangements. We also examined the locations of 5S and 28S ribosomal tandem repeats, with the former often associated with telomeric regions and the latter with nucleolus organizer regions (NORs). The translocation-associated gene mapping did not detect the translocation in X. pygmaeus, supporting the hypothesis that the translocation is restricted to Silurana, but instead identified a pericentromeric inversion on chromosome 2S. The fusion-associated gene mapping confirmed the fusion of chromosomes 9 and 10, supporting this fusion as an ancestral state in subgenus Xenopus. As expected, the 5S repeats were found predominantly in telomere regions on almost all chromosomes. The nucleolar 28S repeats were localized on chromosome 6S, a position previously found only in the closely related species X. parafraseri, whereas other, phylogenetically more distant species have NORs located on different chromosomes. We therefore hypothesize that a jumping mechanism could explain the relatively frequent changes in the location of NORs during Xenopus evolution.
- MeSH
- genom MeSH
- genová přestavba * MeSH
- hybridizace in situ fluorescenční MeSH
- karyotyp MeSH
- karyotypizace MeSH
- mapování chromozomů MeSH
- molekulární evoluce MeSH
- organizátor jadérka * genetika MeSH
- translokace genetická MeSH
- Xenopus * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Most vertebrates develop distinct females and males, where sex is determined by repeatedly evolved environmental or genetic triggers. Undifferentiated sex chromosomes and large genomes have caused major knowledge gaps in amphibians. Only a single master sex-determining gene, the dmrt1-paralogue (dm-w) of female-heterogametic clawed frogs (Xenopus; ZW♀/ZZ♂), is known across >8740 species of amphibians. In this study, by combining chromosome-scale female and male genomes of a non-model amphibian, the European green toad, Bufo(tes) viridis, with ddRAD- and whole genome pool-sequencing, we reveal a candidate master locus, governing a male-heterogametic system (XX♀/XY♂). Targeted sequencing across multiple taxa uncovered structural X/Y-variation in the 5'-regulatory region of the gene bod1l, where a Y-specific non-coding RNA (ncRNA-Y), only expressed in males, suggests that this locus initiates sex-specific differentiation. Developmental transcriptomes and RNA in-situ hybridization show timely and spatially relevant sex-specific ncRNA-Y and bod1l-gene expression in primordial gonads. This coincided with differential H3K4me-methylation in pre-granulosa/pre-Sertoli cells, pointing to a specific mechanism of amphibian sex determination.
- MeSH
- chromozom X * genetika MeSH
- chromozom Y * genetika MeSH
- genom MeSH
- molekulární evoluce MeSH
- nekódující RNA genetika MeSH
- obojživelníci genetika MeSH
- procesy určující pohlaví * genetika MeSH
- transkripční faktory genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DMRT1 protein MeSH Prohlížeč
- nekódující RNA MeSH
- transkripční faktory MeSH
In mammals, leptin and tumor-necrosis factor (TNF) are prominent interacting adipokines mediating appetite control and insulin sensitivity. While TNF pleiotropically functions in immune defense and cell survival, leptin is largely confined to signaling energy stores in adipocytes. Knowledge about the function of avian leptin and TNF is limited and they are absent or lowly expressed in adipose, respectively. Employing radiation-hybrid mapping and FISH-TSA, we mapped TNF and its syntenic genes to chicken chromosome 16 within the major histocompatibility complex (MHC) region. This mapping position suggests that avian TNF has a role in regulating immune response. To test its possible interaction with leptin within the immune system and beyond, we compared the transcription patterns of TNF, leptin and their cognate receptors obtained by meta-analysis of GenBank RNA-seq data. While expression of leptin and its receptor (LEPR) were detected in the brain and digestive tract, TNF and its receptor mRNAs were primarily found in viral-infected and LPS-treated leukocytes. We confirmed leptin expression in the duodenum by immunohistochemistry staining. Altogether, we suggest that whereas leptin and TNF interact as adipokines in mammals, in birds, they have distinct roles. Thus, the interaction between leptin and TNF may be unique to mammals.
- Klíčová slova
- FISH-TSA, TNF, chicken, digestive tract, duodenum, immune system, leptin, radiation-hybrid mapping,
- MeSH
- buněčné linie MeSH
- duodenum metabolismus MeSH
- kur domácí genetika metabolismus MeSH
- leptin genetika metabolismus MeSH
- leptinové receptory metabolismus MeSH
- mapování chromozomů * MeSH
- mapování pomocí radiačních hybridů MeSH
- messenger RNA genetika metabolismus MeSH
- metafáze genetika MeSH
- receptory TNF genetika metabolismus MeSH
- regulace genové exprese * MeSH
- savci genetika MeSH
- signální transdukce * MeSH
- syntenie genetika MeSH
- TNF-alfa genetika metabolismus MeSH
- trávení * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- leptin MeSH
- leptinové receptory MeSH
- messenger RNA MeSH
- receptory TNF MeSH
- TNF-alfa MeSH
BACKGROUND: Genomic sequence assemblies are key tools for a broad range of gene function and evolutionary studies. The diploid amphibian Xenopus tropicalis plays a pivotal role in these fields due to its combination of experimental flexibility, diploid genome, and early-branching tetrapod taxonomic position, having diverged from the amniote lineage ~360 million years ago. A genome assembly and a genetic linkage map have recently been made available. Unfortunately, large gaps in the linkage map attenuate long-range integrity of the genome assembly. RESULTS: We laser dissected the short arm of X. tropicalis chromosome 7 for next generation sequencing and computational mapping to the reference genome. This arm is of particular interest as it encodes the sex determination locus, but its genetic map contains large gaps which undermine available genome assemblies. Whole genome amplification of 15 laser-microdissected 7p arms followed by next generation sequencing yielded ~35 million reads, over four million of which uniquely mapped to the X. tropicalis genome. Our analysis placed more than 200 previously unmapped scaffolds on the analyzed chromosome arm, providing valuable low-resolution physical map information for de novo genome assembly. CONCLUSION: We present a new approach for improving and validating genetic maps and sequence assemblies. Whole genome amplification of 15 microdissected chromosome arms provided sufficient high-quality material for localizing previously unmapped scaffolds and genes as well as recognizing mislocalized scaffolds.
- MeSH
- chromozomy genetika MeSH
- genomika MeSH
- hybridizace nukleových kyselin MeSH
- lasery * MeSH
- mapování chromozomů MeSH
- mikrodisekce * MeSH
- sekvenční analýza DNA metody MeSH
- techniky amplifikace nukleových kyselin MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Xenopus genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Laser microdissection was used for the preparation of whole chromosome painting probes in Silurana (Xenopus) tropicalis. Subsequent cross-species fluorescence in situ hybridization (Zoo-FISH) on its tetraploid relative Xenopus laevis revealed persistence of chromosomal quartets even after 50-65 million years of separate evolution. Their arrangement is in a partial concordance with previous experiments based on similarity of a high-resolution replication banding pattern. Further support for an allotetraploid origin of X. laevis was given by hybridization with a probe derived from the smallest X. tropicalis chromosome (Xt10). Here, pericentric areas of both arms of Xl 14 and 18 were stained, indicating intrachromosomal rearrangements. The positions of signals were not in agreement with the chromosomal quartets revealed by painting probes Xt 8 and 9 (Xl 11 + 14 and Xl 15 + 18, respectively). This suggests that both X. tropicalis chromosomes underwent non-reciprocal translocation of Xt10 separately in at least two different ancient ancestors. In addition, the observed translocation events could explain the origin of individuals with 18 chromosomes in diploid karyotypes, probably extinct after the genesis of the allotetraploid X. laevis (2n = 36).
- MeSH
- biologická evoluce * MeSH
- chromozomy genetika MeSH
- cytogenetické vyšetření metody MeSH
- DNA sondy * MeSH
- hybridizace in situ fluorescenční MeSH
- karyotypizace MeSH
- mikrodisekce * MeSH
- pruhování chromozomů MeSH
- translokace genetická MeSH
- Xenopus laevis genetika MeSH
- Xenopus genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA sondy * MeSH