Nejvíce citovaný článek - PubMed ID 33166278
A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome
Chromosomal rearrangements are fundamental evolutionary drivers leading to genomic diversification. African clawed frogs (genus Xenopus, subgenera Silurana and Xenopus) represent an allopolyploid model system with conserved chromosome numbers in species with the same ploidy within each subgenus. Two significant interchromosomal rearrangements have been identified: a translocation between chromosomes 9 and 2, found in subgenus Silurana, and a fusion between chromosomes 9 and 10, probably widespread in subgenus Xenopus. Here, we study the allotetraploid Xenopus pygmaeus (subgenus Xenopus) based on in-depth karyotype analysis using chromosome measurements and fluorescent in situ hybridization (FISH). We designed FISH probes for genes associated with translocation and fusion to test for the presence of the two main types of rearrangements. We also examined the locations of 5S and 28S ribosomal tandem repeats, with the former often associated with telomeric regions and the latter with nucleolus organizer regions (NORs). The translocation-associated gene mapping did not detect the translocation in X. pygmaeus, supporting the hypothesis that the translocation is restricted to Silurana, but instead identified a pericentromeric inversion on chromosome 2S. The fusion-associated gene mapping confirmed the fusion of chromosomes 9 and 10, supporting this fusion as an ancestral state in subgenus Xenopus. As expected, the 5S repeats were found predominantly in telomere regions on almost all chromosomes. The nucleolar 28S repeats were localized on chromosome 6S, a position previously found only in the closely related species X. parafraseri, whereas other, phylogenetically more distant species have NORs located on different chromosomes. We therefore hypothesize that a jumping mechanism could explain the relatively frequent changes in the location of NORs during Xenopus evolution.
- MeSH
- genom MeSH
- genová přestavba * MeSH
- hybridizace in situ fluorescenční MeSH
- karyotyp MeSH
- karyotypizace MeSH
- mapování chromozomů MeSH
- molekulární evoluce MeSH
- organizátor jadérka * genetika MeSH
- translokace genetická MeSH
- Xenopus * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Sex chromosomes of some closely related species are not homologous, and sex chromosome turnover is often attributed to mechanisms that involve linkage to or recombination arrest around sex-determining loci. We examined sex chromosome turnover and recombination landscapes in African clawed frogs (genus Xenopus) with reduced representation genome sequences from 929 individuals from 19 species. We recovered extensive variation in sex chromosomes, including at least eight nonhomologous sex-associated regions-five newly reported here, with most maintaining female heterogamety, but two independent origins of Y chromosomes. Seven of these regions are found in allopolyploid species in the subgenus Xenopus, and all of these reside in one of their two subgenomes, which highlights functional asymmetry between subgenomes. In three species with chromosome-scale genome assemblies (Xenopus borealis, Xenopus laevis, and Xenopus tropicalis), sex-specific recombination landscapes have similar patterns of sex differences in rates and locations of recombination. Across these Xenopus species, sex-associated regions are significantly nearer chromosome ends than expected by chance, even though this is where the ancestral recombination rate is highest in both sexes before the regions became sex associated. As well, expansions of sex-associated recombination arrest occurred multiple times. New information on sex linkage along with among-species variation in female specificity of the sex-determining gene dm-w argues against a "jumping gene" model, where dm-w moves around the genome. The diversity of sex chromosomes in Xenopus raises questions about the roles of natural and sexual selection, polyploidy, the recombination landscape, and neutral processes in driving sex chromosome turnover in animal groups with mostly heterogametic females.
- Klíčová slova
- allopolyploidization, genetic linkage, recombination landscape, sex chromosome turnover, sex determination,
- MeSH
- pohlavní chromozomy * genetika MeSH
- procesy určující pohlaví MeSH
- rekombinace genetická MeSH
- Xenopus * genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Most vertebrates develop distinct females and males, where sex is determined by repeatedly evolved environmental or genetic triggers. Undifferentiated sex chromosomes and large genomes have caused major knowledge gaps in amphibians. Only a single master sex-determining gene, the dmrt1-paralogue (dm-w) of female-heterogametic clawed frogs (Xenopus; ZW♀/ZZ♂), is known across >8740 species of amphibians. In this study, by combining chromosome-scale female and male genomes of a non-model amphibian, the European green toad, Bufo(tes) viridis, with ddRAD- and whole genome pool-sequencing, we reveal a candidate master locus, governing a male-heterogametic system (XX♀/XY♂). Targeted sequencing across multiple taxa uncovered structural X/Y-variation in the 5'-regulatory region of the gene bod1l, where a Y-specific non-coding RNA (ncRNA-Y), only expressed in males, suggests that this locus initiates sex-specific differentiation. Developmental transcriptomes and RNA in-situ hybridization show timely and spatially relevant sex-specific ncRNA-Y and bod1l-gene expression in primordial gonads. This coincided with differential H3K4me-methylation in pre-granulosa/pre-Sertoli cells, pointing to a specific mechanism of amphibian sex determination.
- MeSH
- chromozom X * genetika MeSH
- chromozom Y * genetika MeSH
- genom MeSH
- molekulární evoluce MeSH
- nekódující RNA genetika MeSH
- obojživelníci genetika MeSH
- procesy určující pohlaví * genetika MeSH
- transkripční faktory genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DMRT1 protein MeSH Prohlížeč
- nekódující RNA MeSH
- transkripční faktory MeSH
Amphibians have highly diverse sex-determining modes leading to a notable interest in vertebrate sex determination and sex chromosome evolution. The identification of sex-determining systems in amphibians, however, is often difficult as a vast majority consist of homomorphic sex chromosomes making them hard to distinguish. In this study, we used Diversity Array Technology sequencing (DArTseq) to identify the sex-determining system in the ornate burrowing frog from Australia, Platyplectrum ornatum. We applied DArTseq to 44 individuals, 19 males and 25 females, collected from two locations to develop sex-linked markers. Unexpectedly, these 44 individuals were classified into two distinct population clusters based on our SNP analyses, 36 individuals in cluster 1, and 8 individuals in cluster 2. We then performed sex-linkage analyses separately in each cluster. We identified 35 sex-linked markers from cluster 1, which were all associated with maleness. Therefore, P. ornatum cluster 1 is utilising a male heterogametic (XX/XY) sex-determining system. On the other hand, we identified 210 sex-linked markers from cluster 2, of which 89 were male specific, i.e., identifying XX/XY sex determining system and 111 were female specific, i.e., identifying ZZ/ZW sex determining system, suggesting existence of either male or female heterogametic sex determining system in cluster 2. We also performed cytogenetic analyses in 1 male and 1 female from cluster 1; however, we did not detect any visible differentiation between the X and Y sex chromosomes. We also mapped sex-linked markers from the two clusters against the P. ornatum genome and our comparative analysis indicated that the sex chromosomes in both clusters shared homologies to chromosome 10 (autosome) of Rana temporaria and ZWY sex chromosome of Xenopus tropicalis. Our preliminary data suggest that it is plausible that the cluster 2 has a potential to be either male or female heterogamety in sex determination, requiring further investigation.
- MeSH
- biologické markery MeSH
- lidé MeSH
- pohlavní chromozomy * genetika MeSH
- Rana temporaria MeSH
- Xenopus MeSH
- žáby * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Austrálie MeSH
- Názvy látek
- biologické markery MeSH
Sexual vs. asexual reproduction-unisexual vs. bisexual populations-diploid vs. polyploid biotypes-genetic vs. environmental sex determination: all these natural phenomena are associated with the genus of teleost fish, Carassius. This review places emphasis on two Carassius entities with completely different biological characteristics: one globally widespread and invasive Carassius gibelio, and the other C. carassius with a decreasing trend of natural occurrence. Comprehensive biological and cytogenetic knowledge of both entities, including the physical interactions between them, can help to balance the advantages of highly invasive and disadvantages of threatened species. For example, the benefits of a wide-ranged colonization can lead to the extinction of native species or be compensated by parasitic enemies and lead to equilibrium. This review emphasizes the comprehensive biology and cytogenetic knowledge and the importance of the Carassius genus as one of the most useful experimental vertebrate models for evolutionary biology and genetics. Secondly, the review points out that effective molecular cytogenetics should be used for the identification of various species, ploidy levels, and hybrids. The proposed investigation of these hallmark characteristics in Carassius may be applied in conservation efforts to sustain threatened populations in their native ranges. Furthermore, the review focuses on the consequences of the co-occurrence of native and non-native species and outlines future perspectives of Carassius research.
- Klíčová slova
- Carassius auratus complex, asexuality, biotype, hybridization, ploidy level, sex determination, sexuality, species,
- MeSH
- Cyprinidae * MeSH
- cytogenetické vyšetření MeSH
- cytogenetika MeSH
- diploidie MeSH
- ploidie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Genomic analysis of hybrid zones offers unique insights into emerging reproductive isolation and the dynamics of introgression. Because hybrid genomes consist of blocks inherited from one or the other parental taxon, linkage information is essential. In most cases, the spectrum of local ancestry tracts can be efficiently uncovered from dense linkage maps. Here, we report the development of such a map for the hybridizing toads, Bombina bombina and Bombina variegata (Anura: Bombinatoridae). Faced with the challenge of a large (7-10 Gb), repetitive genome, we set out to identify a large number of Mendelian markers in the nonrepetitive portion of the genome that report B. bombina vs B. variegata ancestry with appropriately quantified statistical support. Bait sequences for targeted enrichment were selected from a draft genome assembly, after filtering highly repetitive sequences. We developed a novel approach to infer the most likely diplotype per sample and locus from the raw read mapping data, which is robust to over-merging and obviates arbitrary filtering thresholds. Validation of the resulting map with 4755 markers underscored the large-scale synteny between Bombina and Xenopus tropicalis. By assessing the sex of late-stage F2 tadpoles from histological sections, we identified the sex-determining region in the Bombina genome to 7 cM on LG5, which is homologous to X. tropicalis chromosome 5, and inferred male heterogamety. Interestingly, chromosome 5 has been repeatedly recruited as a sex chromosome in anurans with XY sex determination.
- Klíčová slova
- anurans, genome assembly, hybrid zone, large-scale synteny, linkage map, population pileups diplotyping, segregation distortion, sex-determining region, targeted capture,
- MeSH
- genetická vazba MeSH
- genom * MeSH
- larva MeSH
- mapování chromozomů MeSH
- žáby * genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Until recently, the field of sex chromosome evolution has been dominated by the canonical unidirectional scenario, first developed by Muller in 1918. This model postulates that sex chromosomes emerge from autosomes by acquiring a sex-determining locus. Recombination reduction then expands outwards from this locus, to maintain its linkage with sexually antagonistic/advantageous alleles, resulting in Y or W degeneration and potentially culminating in their disappearance. Based mostly on empirical vertebrate research, we challenge and expand each conceptual step of this canonical model and present observations by numerous experts in two parts of a theme issue of Phil. Trans. R. Soc. B. We suggest that greater theoretical and empirical insights into the events at the origins of sex-determining genes (rewiring of the gonadal differentiation networks), and a better understanding of the evolutionary forces responsible for recombination suppression are required. Among others, crucial questions are: Why do sex chromosome differentiation rates and the evolution of gene dose regulatory mechanisms between male versus female heterogametic systems not follow earlier theory? Why do several lineages not have sex chromosomes? And: What are the consequences of the presence of (differentiated) sex chromosomes for individual fitness, evolvability, hybridization and diversification? We conclude that the classical scenario appears too reductionistic. Instead of being unidirectional, we show that sex chromosome evolution is more complex than previously anticipated and principally forms networks, interconnected to potentially endless outcomes with restarts, deletions and additions of new genomic material. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
- Klíčová slova
- evolution, sex chromosomes, sex determination, vertebrates,
- MeSH
- biologická evoluce * MeSH
- obratlovci genetika růst a vývoj MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
- Klíčová slova
- clonal reproduction, evolution, hybridization, sex chromosomes, speciation,
- MeSH
- hybridizace genetická * MeSH
- meióza * MeSH
- obratlovci genetika MeSH
- pohlavní chromozomy genetika MeSH
- polyploidie * MeSH
- vznik druhů (genetika) * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The tempo of sex chromosome evolution-how quickly, in what order, why and how their particular characteristics emerge during evolution-remains poorly understood. To understand this further, we studied three closely related species of African clawed frog (genus Xenopus), that each has independently evolved sex chromosomes. We identified population polymorphism in the extent of sex chromosome differentiation in wild-caught Xenopus borealis that corresponds to a large, previously identified region of recombination suppression. This large sex-linked region of X. borealis has an extreme concentration of genes that encode transcripts with sex-biased expression, and we recovered similar findings in the smaller sex-linked regions of Xenopus laevis and Xenopus tropicalis. In two of these species, strong skews in expression (mostly female-biased in X. borealis, mostly male-biased in X. tropicalis) are consistent with expectations associated with recombination suppression, and in X. borealis, we hypothesize that a degenerate ancestral Y-chromosome transitioned into its contemporary Z-chromosome. These findings indicate that Xenopus species are tolerant of differences between the sexes in dosage of the products of multiple genes, and offer insights into how evolutionary transformations of ancestral sex chromosomes carry forward to affect the function of new sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
- Klíčová slova
- comparative transcriptomics, dosage tolerance, heterogamy, recombination suppression,
- MeSH
- genetická transkripce * MeSH
- pohlavní chromozomy genetika MeSH
- pohlavní dimorfismus MeSH
- procesy určující pohlaví * MeSH
- Xenopus genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Triggers and biological processes controlling male or female gonadal differentiation vary in vertebrates, with sex determination (SD) governed by environmental factors or simple to complex genetic mechanisms that evolved repeatedly and independently in various groups. Here, we review sex evolution across major clades of vertebrates with information on SD, sexual development and reproductive modes. We offer an up-to-date review of divergence times, species diversity, genomic resources, genome size, occurrence and nature of polyploids, SD systems, sex chromosomes, SD genes, dosage compensation and sex-biased gene expression. Advances in sequencing technologies now enable us to study the evolution of SD at broader evolutionary scales, and we now hope to pursue a sexomics integrative research initiative across vertebrates. The vertebrate sexome comprises interdisciplinary and integrated information on sexual differentiation, development and reproduction at all biological levels, from genomes, transcriptomes and proteomes, to the organs involved in sexual and sex-specific processes, including gonads, secondary sex organs and those with transcriptional sex-bias. The sexome also includes ontogenetic and behavioural aspects of sexual differentiation, including malfunction and impairment of SD, sexual differentiation and fertility. Starting from data generated by high-throughput approaches, we encourage others to contribute expertise to building understanding of the sexomes of many key vertebrate species. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
- Klíčová slova
- evolution, genomics, reproduction, sex chromosomes, sex determination, vertebrates,
- MeSH
- biologická evoluce * MeSH
- délka genomu * MeSH
- molekulární evoluce MeSH
- obratlovci genetika MeSH
- ovarium růst a vývoj MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví * MeSH
- sexuální diferenciace genetika MeSH
- testis růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH