Most cited article - PubMed ID 17410548
Abnormal lens morphogenesis and ectopic lens formation in the absence of beta-catenin function
The vertebrate eye is a highly specialized sensory organ, which is derived from the anterior neural plate, head surface ectoderm, and neural crest-derived mesenchyme. The single central eye field, generated from the anterior neural plate, divides to give rise to the optic vesicle, which evaginates toward the head surface ectoderm. Subsequently, the surface ectoderm, in conjunction with the optic vesicle invaginates to form the lens vesicle and double-layered optic cup, respectively. This complex process is controlled by transcription factors and several intracellular and extracellular signaling pathways including WNT/β-catenin signaling. This signaling pathway plays an essential role in multiple developmental processes and has a profound effect on cell proliferation and cell fate determination. During eye development, the activity of WNT/β-catenin signaling is tightly controlled. Faulty regulation of WNT/β-catenin signaling results in multiple ocular malformations due to defects in the process of cell fate determination and differentiation. This mini-review summarizes recent findings on the role of WNT/β-catenin signaling in eye development. Whilst this mini-review focuses on loss-of-function and gain-of-function mutants of WNT/β-catenin signaling components, it also highlights some important aspects of β-catenin-independent WNT signaling in the eye development at later stages.
- Keywords
- WNT, development, differentiation, retina, β-catenin,
- Publication type
- Journal Article MeSH
- Review MeSH
The primary cilium, a microtubule-based organelle found in most cells, is a centre for mechano-sensing fluid movement and cellular signalling, notably through the Hedgehog pathway. We recently found that each lens fibre cell has an apically situated primary cilium that is polarised to the side of the cell facing the anterior pole of the lens. The direction of polarity is similar in neighbouring cells so that in the global view, lens fibres exhibit planar cell polarity (PCP) along the equatorial-anterior polar axis. Ciliogenesis has been associated with the establishment of PCP, although the exact relationship between PCP and the role of cilia is still controversial. To test the hypothesis that the primary cilia have a role in coordinating the precise alignment/orientation of the fibre cells, IFT88, a key component of the intraflagellar transport (IFT) complex, was removed specifically from the lens at different developmental stages using several lens-specific Cre-expressing mouse lines (MLR10- and LR-Cre). Irrespective of which Cre-line was adopted, both demonstrated that in IFT88-depleted cells, the ciliary axoneme was absent or substantially shortened, confirming the disruption of primary cilia formation. However no obvious histological defects were detected even when IFT88 was removed from the lens placode as early as E9.5. Specifically, the lens fibres aligned/oriented towards the poles to form the characteristic Y-shaped sutures as normal. Consistent with this, in primary lens epithelial explants prepared from these conditional knockout mouse lenses, the basal bodies still showed polarised localisation at the apical surface of elongating cells upon FGF-induced fibre differentiation. We further investigated the lens phenotype in knockouts of Bardet-Biedl Syndrome (BBS) proteins 4 and 8, the components of the BBSome complex which modulate ciliary function. In these BBS4 and 8 knockout lenses, again we found the pattern of the anterior sutures formed by the apical tips of elongating/migrating fibres were comparable to the control lenses. Taken together, these results indicate that primary cilia do not play an essential role in the precise cellular alignment/orientation of fibre cells. Thus, it appears that in the lens cilia are not required to establish PCP.
- Keywords
- Bardet–Biedl Syndrome (BBS), IFT88, Lens, Planar cell polarity (PCP), Primary cilium,
- MeSH
- Cilia physiology MeSH
- Cytoskeletal Proteins MeSH
- Epithelial Cells ultrastructure MeSH
- Cells, Cultured MeSH
- Mice, Knockout MeSH
- Tumor Suppressor Proteins genetics MeSH
- Lens, Crystalline ultrastructure MeSH
- Cell Polarity MeSH
- Microtubule-Associated Proteins genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- BBS4 protein, mouse MeSH Browser
- Cytoskeletal Proteins MeSH
- Tumor Suppressor Proteins MeSH
- Microtubule-Associated Proteins MeSH
- Tg737Rpw protein, mouse MeSH Browser
- Ttc8 protein, mouse MeSH Browser
The Wnt/β-catenin signaling pathway controls many processes during development, including cell proliferation, cell differentiation and tissue homeostasis, and its aberrant regulation has been linked to various pathologies. In this study we investigated the effect of ectopic activation of Wnt/β-catenin signaling during lens fiber cell differentiation. To activate Wnt/β-catenin signaling in lens fiber cells, the transgenic mouse referred to as αA-CLEF was generated, in which the transactivation domain of β-catenin was fused to the DNA-binding protein LEF1, and expression of the transgene was controlled by αA-crystallin promoter. Constitutive activation of Wnt/β-catenin signaling in lens fiber cells of αA-CLEF mice resulted in abnormal and delayed fiber cell differentiation. Moreover, adult αA-CLEF mice developed cataract, microphthalmia and manifested downregulated levels of γ-crystallins in lenses. We provide evidence of aberrant expression of cell cycle regulators in embryonic lenses of αA-CLEF transgenic mice resulting in the delay in cell cycle exit and in the shift of fiber cell differentiation to the central fiber cell compartment. Our results indicate that precise regulation of the Wnt/β-catenin signaling activity during later stages of lens development is essential for proper lens fiber cell differentiation and lens transparency.
- MeSH
- beta Catenin genetics metabolism MeSH
- Cell Differentiation genetics MeSH
- Cell Cycle genetics MeSH
- DNA-Binding Proteins genetics metabolism MeSH
- Epithelial Cells metabolism MeSH
- Cataract genetics metabolism MeSH
- Crystallins genetics metabolism MeSH
- Humans MeSH
- Microphthalmos genetics metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice, Transgenic genetics metabolism MeSH
- Mice MeSH
- Lens, Crystalline metabolism MeSH
- Promoter Regions, Genetic genetics MeSH
- Wnt Signaling Pathway genetics MeSH
- Signal Transduction genetics MeSH
- Lymphoid Enhancer-Binding Factor 1 MeSH
- Gene Expression Regulation, Developmental MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- beta Catenin MeSH
- DNA-Binding Proteins MeSH
- Crystallins MeSH
- Lef1 protein, mouse MeSH Browser
- Lymphoid Enhancer-Binding Factor 1 MeSH
During mouse eye development, all retinal cell types are generated from the population of retina-committed progenitors originating from the neuroepithelium of the optic vesicle. Conditional gene inactivation provides an efficient tool for studying the genetic basis of the developing retina; however, the number of retina-specific Cre lines is limited. Here we report generation of the mRx-Cre BAC transgenic mouse line in which the expression of Cre recombinase is controlled by regulatory sequences of the mouse Rx gene, one of the earliest determinants of retinal development. When mRx-Cre transgenic mice were crossbred with the ROSA26R or ROSA26R-EYFP reporter lines, the Cre activity was observed in the optic sulcus from embryonic day 8.5 onwards and later in all progenitors residing in the neuroepithelium of the optic cup. Our results suggest that mRx-Cre provides a unique tool for functional genetic studies in very early stages of retinal development. Moreover, since eye organogenesis is dependent on the inductive signals between the optic vesicle and head surface ectoderm, the inductive ability of the optic vesicle can be analyzed using mRx-Cre transgenic mice.
- MeSH
- Time Factors MeSH
- Gene Deletion * MeSH
- Genetic Engineering methods MeSH
- Homeodomain Proteins genetics MeSH
- Integrases metabolism MeSH
- Stem Cells cytology metabolism MeSH
- Mice, Transgenic MeSH
- Mice MeSH
- Eye Proteins genetics MeSH
- Recombination, Genetic MeSH
- Retina cytology MeSH
- Pregnancy MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cre recombinase MeSH Browser
- Homeodomain Proteins MeSH
- Integrases MeSH
- Eye Proteins MeSH
- Rx protein, mouse MeSH Browser