Nejvíce citovaný článek - PubMed ID 17550431
Wound bed preparation (WBP) is an integral part of the care programme for chronic wounds. The acronym TIME is used in the context of WBP and describes four barriers to healing in chronic wounds; namely, dead Tissue, Infection and inflammation, Moisture imbalance and a non-migrating Edge. Larval debridement therapy (LDT) stems from observations that larvae of the blowfly Lucilia sericata clean wounds of debris. Subsequent clinical studies have proven debriding efficacy, which is likely to occur as a result of enzymatically active alimentary products released by the insect. The antimicrobial, anti-inflammatory and wound healing activities of LDT have also been investigated, predominantly in a pre-clinical context. This review summarises the findings of investigations into the molecular mechanisms of LDT and places these in context with the clinical concept of WBP and TIME. It is clear from these findings that biotherapy with L. sericata conforms with TIME, through the enzymatic removal of dead tissue and its associated biofilm, coupled with the secretion of defined antimicrobial peptides. This biotherapeutic impact on the wound serves to reduce inflammation, with an associated capacity for an indirect effect on moisture imbalance. Furthermore, larval serine proteinases have the capacity to alter fibroblast behaviour in a manner conducive to the formation of granulation tissue.
- Klíčová slova
- Chronic wound, Infection, Larval debridement therapy, TIME, Tissue regeneration,
- MeSH
- debridement MeSH
- Diptera MeSH
- hojení ran MeSH
- larva MeSH
- lidé MeSH
- organizace času * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
OBJECTIVE: To investigate the antibacterial properties of lucifensin in maggots of Lucilia sericata after septic injury. METHODS: In our preliminary study we have shown that injuring the maggots with a needle soaked in lipopolysaccharide solution induced within 24 h lucifensin expression in the fat body and in the grease coupler of the salivary glands. It is assumed that lucifensin is secreted solely from this tissue into the haemolymph (similar to other insect defensins) and not into secreted/excreted products. We used high-performance liquid chromatography fractionation and radial diffusion assay to investigate the antibacterial properties of haemolymph extracted from larvae after septic injury. RESULTS: After septic injury, production of lucifensin in the haemolymph is increased. This led to higher antibacterial activity of such haemolymph in comparison to non-stimulated larvae. COCLUSIONS: These results suggest that beside the previously demonstrated role of lucifensin in the debridement therapy, lucifensin is simultaneously important as a part of the systematic immune response.
- Klíčová slova
- Defensin, Immune-challenge, Lucifensin, Lucilia sericata, Wound bacteria,
- Publikační typ
- časopisecké články MeSH
Defensins are the most widespread antimicrobial peptides characterised in insects. These cyclic peptides, 4-6 kDa in size, are folded into α-helical/β-sheet mixed structures and have a common conserved motif of three intramolecular disulfide bridges with a Cys1-Cys4, Cys2-Cys5 and Cys3-Cys6 connectivity. They have the ability to kill especially Gram-positive bacteria and some fungi, but Gram-negative bacteria are more resistant against them. Among them are the medicinally important compounds lucifensin and lucifensin II, which have recently been identified in the medicinal larvae of the blowflies Lucilia sericata and Lucilia cuprina, respectively. These defensins contribute to wound healing during a procedure known as maggot debridement therapy (MDT) which is routinely used at hospitals worldwide. Here we discuss the decades-long story of the effort to isolate and characterise these two defensins from the bodies of medicinal larvae or from their secretions/excretions. Furthermore, our previous studies showed that the free-range larvae of L. sericata acutely eliminated most of the Gram-positive strains of bacteria and some Gram-negative strains in patients with infected diabetic foot ulcers, but MDT was ineffective during the healing of wounds infected with Pseudomonas sp. and Acinetobacter sp. The bactericidal role of lucifensins secreted into the infected wound by larvae during MDT and its ability to enhance host immunity by functioning as immunomodulator is also discussed.
- Publikační typ
- časopisecké články MeSH
A novel homologue of insect defensin designated lucifensin (Lucilia defensin) was purified from the extracts of various tissues (gut, salivary glands, fat body, haemolymph) of green bottle fly (Lucilia sericata) larvae and from their excretions/secretions. The primary sequence of this peptide of 40 residues and three intramolecular disulfide bridges was determined by ESI-QTOF mass spectrometry and Edman degradation and is very similar to that of sapecin and other dipteran defensins. We assume that lucifensin is the key antimicrobial component that protects the maggots when they are exposed to the highly infectious environment of a wound during the medicinal process known as maggot therapy. We also believe that lucifensin is that long-sought larger molecular weight antimicrobial factor of the Lucilia sericata excretions/secretions believed to be effective against pathogenic elements of the wound microbial flora.
- MeSH
- antiinfekční látky chemie izolace a purifikace farmakologie MeSH
- defensiny chemie izolace a purifikace farmakologie MeSH
- Diptera metabolismus MeSH
- hmotnostní spektrometrie MeSH
- hojení ran účinky léků MeSH
- larva metabolismus MeSH
- mikrobiální testy citlivosti MeSH
- molekulární sekvence - údaje MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiinfekční látky MeSH
- defensiny MeSH