Nejvíce citovaný článek - PubMed ID 17881373
Ca2+-insensitive and -sensitive E1 subunits of the 2-oxoglutarate dehydrogenase complex (OGDHC) regulate tissue-specific NADH and ATP supply by mutually exclusive OGDH exons 4a and 4b. Here we show that their splicing is enforced by distant lariat branch points (dBPs) located near the 5' splice site of the intervening intron. dBPs restrict the intron length and prevent transposon insertions, which can introduce or eliminate dBP competitors. The size restriction was imposed by a single dominant dBP in anamniotes that expanded into a conserved constellation of four dBP adenines in amniotes. The amniote clusters exhibit taxon-specific usage of individual dBPs, reflecting accessibility of their extended motifs within a stable RNA hairpin rather than U2 snRNA:dBP base-pairing. The dBP expansion took place in early terrestrial species and was followed by a uridine enrichment of large downstream polypyrimidine tracts in mammals. The dBP-protected megatracts permit reciprocal regulation of exon 4a and 4b by uridine-binding proteins, including TIA-1/TIAR and PUF60, which promote U1 and U2 snRNP recruitment to the 5' splice site and BP, respectively, but do not significantly alter the relative dBP usage. We further show that codons for residues critically contributing to protein binding sites for Ca2+ and other divalent metals confer the exon inclusion order that mirrors the Irving-Williams affinity series, linking the evolution of auxiliary splicing motifs in exons to metallome constraints. Finally, we hypothesize that the dBP-driven selection for Ca2+-dependent ATP provision by E1 facilitated evolution of endothermy by optimizing the aerobic scope in target tissues.
- MeSH
- alternativní sestřih * MeSH
- exony MeSH
- HEK293 buňky MeSH
- introny * MeSH
- ketoglutarátdehydrogenasový komplex genetika metabolismus MeSH
- lidé MeSH
- messenger RNA chemie metabolismus MeSH
- místa sestřihu RNA MeSH
- molekulární evoluce MeSH
- obratlovci genetika MeSH
- prekurzory RNA chemie metabolismus MeSH
- protein - isoformy genetika metabolismus MeSH
- rozptýlené repetitivní sekvence MeSH
- sestřihové faktory metabolismus MeSH
- spliceozomy metabolismus MeSH
- termoregulace genetika MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ketoglutarátdehydrogenasový komplex MeSH
- messenger RNA MeSH
- místa sestřihu RNA MeSH
- prekurzory RNA MeSH
- protein - isoformy MeSH
- sestřihové faktory MeSH
- vápník MeSH
For more than three decades, researchers have known that consensus splice sites alone are not sufficient regulatory elements to provide complex splicing regulation. Other regulators, so-called splicing regulatory elements (SREs) are needed. Most importantly, their sequence variants often underlie the development of various human disorders. However, due to their variable location and high degeneracy, these regulatory sequences are also very difficult to recognize and predict. Many different approaches aiming to identify SREs have been tried, often leading to the development of in silico prediction tools. While these tools were initially expected to be helpful to identify splicing-affecting mutations in genetic diagnostics, we are still quite far from meeting this goal. In fact, most of these tools are not able to accurately discern the SRE-affecting pathological variants from those not affecting splicing. Nonetheless, several recent evaluations have given appealing results (namely for EX-SKIP, ESRseq and Hexplorer predictors). In this review, we aim to summarize the history of the different approaches to SRE prediction, and provide additional validation of these tools based on patients' clinical data. Finally, we evaluate their usefulness for diagnostic settings and discuss the challenges that have yet to be met.
- Klíčová slova
- evaluation of prediction tools, in silico predictions, mutation, pre-mRNA splicing, splicing aberration, splicing regulatory elements, variants of unknown significance,
- MeSH
- diagnostické techniky molekulární metody trendy MeSH
- genetické nemoci vrozené * MeSH
- lidé MeSH
- místa sestřihu RNA * MeSH
- mutace * MeSH
- prekurzory RNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- místa sestřihu RNA * MeSH
- prekurzory RNA MeSH
UNLABELLED: Mutations affecting splicing underlie the development of many human genetic diseases, but rather rarely through mechanisms of pseudoexon activation. Here, we describe a novel c.1092T>A mutation in the iduronate-2-sulfatase (IDS) gene detected in a patient with significantly decreased IDS activity and a clinical diagnosis of mild mucopolysaccharidosis II form. The mutation created an exonic de novo acceptor splice site and resulted in a complex splicing pattern with multiple pseudoexon activation in the patient's fibroblasts. Using an extensive series of minigene splicing experiments, we showed that the competition itself between the de novo and authentic splice site led to the bypass of the authentic one. This event then resulted in activation of several cryptic acceptor and donor sites in the upstream intron. As this was an unexpected and previously unreported mechanism of aberrant pseudoexon inclusion, we systematically analysed and disproved that the patient's mutation induced any relevant change in surrounding splicing regulatory elements. Interestingly, all pseudoexons included in the mature transcripts overlapped with the IDS alternative terminal exon 7b suggesting that this sequence represents a key element in the IDS pre-mRNA architecture. These findings extend the spectrum of mechanisms enabling pseudoexon activation and underscore the complexity of mutation-induced splicing aberrations. KEY MESSAGE: Novel exonic IDS gene mutation leads to a complex splicing pattern. Mutation activates multiple pseudoexons through a previously unreported mechanism. Multiple cryptic splice site (ss) activation results from a bypass of authentic ss. Authentic ss bypass is due to a competition between de novo and authentic ss.
- Klíčová slova
- Complex splicing aberration, De novo splice site, IDS, Pseudoexon, Splice site competition,
- MeSH
- bodová mutace MeSH
- exony MeSH
- glykoproteiny genetika MeSH
- introny MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- místa sestřihu RNA MeSH
- mladiství MeSH
- mukopolysacharidóza II genetika MeSH
- mutace MeSH
- sestřih RNA MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykoproteiny MeSH
- IDS protein, human MeSH Prohlížeč
- messenger RNA MeSH
- místa sestřihu RNA MeSH