Nejvíce citovaný článek - PubMed ID 17894638
Cytokine response of porcine cell lines to Salmonella enterica serovar typhimurium and its hilA and ssrA mutants
The aim of this study was to establish a cell culture system for the generation of porcine monocyte-derived macrophages (MDMs) under reduced-serum conditions. Cultures based on either the Nu-Serum™ Growth Medium Supplement (NUS) or a conventional fetal bovine serum (FBS) were compared, which included the assessment of FBS from two different providers (FBS1 and FBS2). The data obtained confirmed the significant impact of culture conditions on in vitro-generated MDMs. The MDMs cultured under reduced-serum conditions showed increased levels of IL-1β and CD86 mRNA and a proinflammatory cytokine profile, characterized by the increased mRNA expression of IL-23p19, CXCL10, and CCL5. Phagocytic and respiratory burst activities were not adversely affected. Surprisingly, the difference between the two FBSs was much more pronounced than the effect of the reduced-serum supplement. The FBS1 culture conditions gave rise to macrophages with higher surface levels of CD14, CD16, and CD163, a lower CD80 mRNA expression, and an increased induction of IL-10 gene expression. In contrast, none of these trends were observed in macrophage cultures supplemented with FBS2. Instead, the FBS2 culture showed increased levels of IL-1b and CD86 mRNA. In conclusion, reduced-serum culture is a useful tool for in vitro porcine MDM generation, in line with the current research trend of reducing FBS use in biological research.
- Klíčová slova
- in vitro, monocyte-derived macrophages, pig, porcine, serum reduction,
- Publikační typ
- časopisecké články MeSH
In Glässer's disease outbreaks, Glaesserella (Haemophilus) parasuis has to overcome the non-specific immune system in the lower respiratory tract, the alveolar macrophages. Here we showed that porcine alveolar macrophages (PAMs) were able to recognize and phagocyte G. parasuis with strain-to-strain variability despite the presence of the capsule in virulent (serovar 1, 5, 12) as well in avirulent strains (serovar 6 and 9). The capsule, outer membrane proteins, virulence-associated autotransporters, cytolethal distending toxins and many other proteins have been identified as virulence factors of this bacterium. Therefore, we immunized pigs with the crude capsular extract (cCE) from the virulent G. parasuis CAPM 6475 strain (serovar 5) and evaluated the role of the anti-cCE/post-vaccinal IgG in the immune response of PAMs to in vitro infection with various G. parasuis strains. We demonstrated the specific binding of the antibodies to the cCE by Western-blotting assay and immunoprecipitation as well as the specific binding to the strain CAPM 6475 in transmission electron microscopy. In the cCE, we identified several virulence-associated proteins that were immunoreactive with IgG isolated from sera of immunized pigs. Opsonization of G. parasuis strains by post-vaccinal IgG led to enhanced phagocytosis of G. parasuis by PAMs at the first two hours of infection. Moreover, opsonization increased the oxidative burst and expression/production of both pro- and anti-inflammatory cytokines. The neutralizing effects of these antibodies on the antioxidant mechanisms of G. parasuis may lead to attenuation of its virulence and pathogenicity in vivo. Together with opsonization of bacteria by these antibodies, the host may eliminate G. parasuis in the infection site more efficiently. Based on these results, the crude capsular extract is a vaccine candidate with immunogenic properties.
- Klíčová slova
- Glaesserela parasuis, Haemophilus parasuis, antibodies, antioxidants, capsule, catalase, porcine alveolar macrophages, reactive oxygen species,
- MeSH
- alveolární makrofágy imunologie metabolismus mikrobiologie MeSH
- antigeny bakteriální imunologie MeSH
- bakteriální pouzdra imunologie MeSH
- fagocytóza MeSH
- Haemophilus parasuis imunologie patogenita MeSH
- hemofilové infekce imunologie metabolismus mikrobiologie MeSH
- kinetika MeSH
- kultivované buňky MeSH
- neutralizující protilátky imunologie metabolismus MeSH
- protilátky bakteriální imunologie metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- séroskupina MeSH
- specificita protilátek MeSH
- Sus scrofa MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny bakteriální MeSH
- neutralizující protilátky MeSH
- protilátky bakteriální MeSH
- reaktivní formy kyslíku MeSH
Deoxynivalenol (DON)-contaminated feed represents a serious problem for pigs due to their high sensitivity to its toxicological effects. The aim of the present study was to evaluate the impact of intrauterine DON exposure on the immune system of piglets. Pure DON was intravenously administered to sows at the end of gestation (during the last 2-3 days of gestation, one dose of 300 µg per day). The plasma concentration of DON was analyzed using liquid chromatography combined with high-resolution Orbitrap-based mass spectrometry (LC-MS/MS (HR)) and selected immune parameters were monitored six times in piglets from birth to 18 weeks. DON was found in the plasma of 90% of newborn piglets at a mean concentration of 6.28 ng/mL and subsequently, at one, three, and seven weeks after birth with decreasing concentrations. Trace amounts were still present in the plasma 14 weeks after birth. Flow cytometry revealed a significant impact of DON on T lymphocyte subpopulations during the early postnatal period. Lower percentages of regulatory T cells, T helper lymphocytes, and their double positive CD4+CD8+ subset were followed by increased percentages of cytotoxic T lymphocytes and γδ T cells. The capacity to produce pro-inflammatory cytokines was also significantly lower after intrauterine DON exposure. In conclusion, this study revealed a long-term persistence of DON in the plasma of the piglets as a consequence of short-term intrauterine exposure, leading to altered immune parameters.
- Klíčová slova
- T lymphocytes, cytokines, deoxynivalenol, immune system, intrauterine exposure, pig,
- MeSH
- časové faktory MeSH
- cytokiny metabolismus MeSH
- fenotyp MeSH
- gestační stáří MeSH
- imunitní systém účinky léků imunologie metabolismus MeSH
- injekce intravenózní MeSH
- maternofetální výměna látek * MeSH
- matka - expozice noxám MeSH
- mediátory zánětu metabolismus MeSH
- Sus scrofa MeSH
- T-lymfocyty - podskupiny účinky léků imunologie metabolismus MeSH
- těhotenství MeSH
- trichotheceny aplikace a dávkování krev toxicita MeSH
- zpožděný efekt prenatální expozice * MeSH
- zvířata MeSH
- Check Tag
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
- deoxynivalenol MeSH Prohlížeč
- mediátory zánětu MeSH
- trichotheceny MeSH
Deoxynivalenol (DON) is a mycotoxin frequently found in cereals, and pigs are one of the most sensitive farm species to DON. The aim of this study was to determine the effects of DON in very low doses on peripheral blood mononuclear cells (PBMC) and on particular lymphocyte subpopulations. The cells were exposed to 1, 10 and 100 ng/mL of DON and lymphocyte viability, proliferation, and cytokine (Interleukin (IL)-1β, IL-2, IL-8, IL-17, Interferon (IFN) γ and tumor necrosis factor (TNF) α production were studied. Cells exposed to DON for 5 days in concentrations of 1 and 10 ng/mL showed higher viability compared to control cells. After 18 h of DON (100 ng/mL) exposure, a significantly lower proliferation after mitogen stimulation was observed. In contrast, an increase of spontaneous proliferation induced by DON (100 ng/mL) was detected. After DON exposure, the expression of cytokine genes decreased, with the exception of IL-1β and IL-8, which increased after 18 h exposure to 100 ng/mL of DON. Among lymphocyte subpopulations, helper T-cells and γδ T-cells exhibiting lower production of IL-17, IFNγ and TNFα were most affected by DON exposure (10 ng/mL). These findings show that subclinical doses of DON lead to changes in immune response.
- Klíčová slova
- PBMC, animal health, cytokines, deoxynivalenol, immunotoxicity, lymphocytes, pig, subclinical dose,
- MeSH
- cytokiny biosyntéza genetika MeSH
- exprese genu účinky léků MeSH
- kultivované buňky MeSH
- leukocyty mononukleární účinky léků imunologie MeSH
- podskupiny lymfocytů účinky léků imunologie MeSH
- prasata MeSH
- proliferace buněk účinky léků MeSH
- trichotheceny toxicita MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
- deoxynivalenol MeSH Prohlížeč
- trichotheceny MeSH
BACKGROUND: This study aims to investigate the anti-inflammatory effect of biologically active phospholipids (BAP) used in preparations for clinical practice in humans. Until date, except anti-neoplastic ability, little is known about anti-inflammatory property of the phospholipids. METHODS: While the course of bacterially induced acute pneumonia and markers of inflammation were studied in in vivo system in pigs orally supplemented with BAP, the pro- and anti-inflammatory response of lipopolysaccharide-stimulated porcine monocyte-derived macrophages to 24 h- and 48 h-treatment by BAP was investigated in in vitro system. In vivo, the animal health status was monitored and pro-inflammatory IL-1β and IL-8 in sera were detected by ELISA during the experiment, while bronchoalveolar lavage fluids (BALF) and the lungs were examined post-mortem. Total and differential counts of white blood cell (WBC) were determined in blood and BALF. In vitro, mRNA expression of pro-inflammatory (TNF-α, IL-1β, CXCL10) and anti-inflammatory (IL-10 and Arg1) cytokines, and level of activated caspase 1 and phosphorylated protein kinase C epsilon (pPKCϵ), were studied using qRT-PCR and Western blot, respectively. For the purposes of both systems, 6 animals were used in each of the BAP-supplemented and the control groups. RESULTS: In vivo, BAP had a positive influence on the course of the disease. The immunomodulatory effects of BAP were confirmed by lower levels of IL-1β, IL-8, and a lower WBC count in the supplemented group in comparison with the control group. A lower percentage of lung parenchyma was affected in the supplemented group comparing to the control group (on average, 4% and 34% of tissue, respectively). In vitro, BAP suppressed mRNA expression of mRNA for IL-10 and all pro-inflammatory cytokines tested. This down-regulation was dose- and time-dependent. Arg1 mRNA expression remained unaffected. Further dose- and time-dependent suppression of the activated caspase 1 and pPKCϵ was detected in macrophages when treated with BAP. CONCLUSIONS: Our results demonstrate that BAP has anti-inflammatory and immunomodulatory properties, thus emphasizing the potential of this compound as a natural healing agent.
- MeSH
- antiflogistika farmakologie MeSH
- bakteriální pneumonie metabolismus patologie MeSH
- bronchoalveolární lavážní tekutina cytologie MeSH
- cytokiny krev MeSH
- fosfolipidethery farmakologie MeSH
- kultivované buňky MeSH
- leukocyty MeSH
- lipopolysacharidy MeSH
- makrofágy účinky léků MeSH
- plíce účinky léků patologie MeSH
- prasata MeSH
- zánět farmakoterapie metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiflogistika MeSH
- cytokiny MeSH
- fosfolipidethery MeSH
- lipopolysacharidy MeSH
BACKGROUND: Within the last decade, macrophages have been shown to be capable of differentiating toward a classically activated phenotype (M1) with a high antimicrobial potential or an alternatively activated phenotype (M2). Some pathogens are capable of interfering with differentiation in order to down-regulate the anti-microbial activity and enhance their survival in the host. RESULTS: To test this ability in Salmonella enterica serovar Typhimurium, we infected porcine alveolar macrophages with wild-type Salmonella Typhimurium and its isogenic mutants devoid of two major pathogenicity islands, SPI-1 and SPI-2. The induction of genes linked with M1 or M2 polarization was determined by quantification of gene expression by RT-qPCR. The ΔSPI-1 mutant induced a high, dose-dependent M1 response but a low M2 response in infected macrophages. On the other hand, wild-type Salmonella Typhimurium induced a low M1 response but a high, dose-dependent M2 response in infected macrophages. The response to ΔSPI-2 mutant infection was virtually the same as the wild-type strain. CONCLUSIONS: We therefore propose that Salmonella Typhimurium DT104 studied here can polarize macrophages towards the less bactericidal M2 phenotype and that this polarization is dependent on the type III secretion system encoded by SPI-1.
- MeSH
- alveolární makrofágy cytologie fyziologie MeSH
- bakteriální proteiny genetika metabolismus MeSH
- cytokiny metabolismus MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- prasata MeSH
- regulace genové exprese u bakterií fyziologie MeSH
- Salmonella typhimurium genetika metabolismus MeSH
- signální transdukce MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- bakteriální proteiny MeSH
- cytokiny MeSH
- Spi1 protein, Salmonella MeSH Prohlížeč
Genes localized at Salmonella pathogenicity island-1 (SPI-1) are involved in Salmonella enterica invasion of host non-professional phagocytes. Interestingly, in macrophages, SPI-1-encoded proteins, in addition to invasion, induce cell death via activation of caspase-1 which also cleaves proIL-1β and proIL-18, precursors of 2 proinflammatory cytokines. In this study we were therefore interested in whether SPI-1-encoded type III secretion system (T3SS) may influence proinflammatory response of macrophages. To test this hypothesis, we infected primary porcine alveolar macrophages with wild-type S. Typhimurium and S. Enteritidis and their isogenic SPI-1 deletion mutants. ΔSPI1 mutants of both serovars invaded approx. 5 times less efficiently than the wild-type strains and despite this, macrophages responded to the infection with ΔSPI1 mutants by increased expression of proinflammatory cytokines IL-1β, IL-8, TNFα, IL-23α and GM-CSF. Identical macrophage responses to that induced by the ΔSPI1 mutants were also observed to the infection with sipB but not the sipA mutant. The hilA mutant exhibited an intermediate phenotype between the ΔSPI1 mutant and the wild-type S. Enteritidis. Our results showed that the SPI-1-encoded T3SS is required not only for cell invasion but in macrophages also for the suppression of early proinflammatory cytokine expression.
- MeSH
- alveolární makrofágy imunologie metabolismus MeSH
- cytokiny genetika metabolismus MeSH
- genomové ostrovy * MeSH
- nemoci prasat imunologie mikrobiologie MeSH
- prasata MeSH
- Salmonella enteritidis genetika MeSH
- Salmonella typhimurium genetika metabolismus MeSH
- salmonelová infekce u zvířat imunologie mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH