Nejvíce citovaný článek - PubMed ID 18025481
Gut microbiota (GM) often exhibit variation between different host species and co-divergence with hosts' phylogeny. Identifying these patterns is a key for understanding the mechanisms that shaped symbiosis between GM and its hosts. Therefore, both GM-host species specificity and GM-host co-divergence have been investigated by numerous studies. However, most of them neglected a possibility that different groups of bacteria within GM can vary in the tightness of their association with the host. Consequently, unlike most of these studies, we aimed to directly address how the strength of GM-host species specificity and GM-host co-divergence vary across different GM clades. We decomposed GM communities of 52 passerine species (394 individuals), characterized by 16S rRNA amplicon sequence variant (ASV) profiles, into monophyletic Binned Taxonomic units (BTUs). Subsequently, we analyzed strength of host species specificity and correlation with host phylogeny separately for resulting BTUs. We found that most BTUs exhibited significant host-species specificity in their composition. Notably, BTUs exhibiting high host-species specificity comprised bacterial taxa known to impact host's physiology and immune system. However, BTUs rarely displayed significant co-divergence with host phylogeny, suggesting that passerine GM evolution is not shaped primarily through a shared evolutionary history between the host and its gut microbes.
- Klíčová slova
- 16S rRNA, co‐divergence, gut microbiota, metabarcoding, passerines,
- Publikační typ
- časopisecké články MeSH
Quality and quantity of food items consumed has a crucial effect on phenotypes. In addition to direct effects mediated by nutrient resources, an individual's diet can also affect the phenotype indirectly by altering its gut microbiota, a potent modulator of physiological, immunity and cognitive functions. However, most of our knowledge of diet-microbiota interactions is based on mammalian species, whereas little is still known about these effects in other vertebrates. We developed a metabarcoding procedure based on cytochrome c oxidase I high-throughput amplicon sequencing and applied it to describe diet composition in breeding colonies of an insectivorous bird, the barn swallow (Hirundo rustica). To identify putative diet-microbiota associations, we integrated the resulting diet profiles with an existing dataset for faecal microbiota in the same individual. Consistent with previous studies based on macroscopic analysis of diet composition, we found that Diptera, Hemiptera, Coleoptera and Hymenoptera were the dominant dietary components in our population. We revealed pronounced variation in diet consumed during the breeding season, along with significant differences between nearby breeding colonies. In addition, we found no difference in diet composition between adults and juveniles. Finally, our data revealed a correlation between diet and faecal microbiota composition, even after statistical control for environmental factors affecting both diet and microbiota variation. Our study suggests that variation in diet induce slight but significant microbiota changes in a non-mammalian host relying on a narrow spectrum of items consumed.
- MeSH
- dieta MeSH
- feces MeSH
- mikrobiota * MeSH
- savci MeSH
- střevní mikroflóra * genetika MeSH
- vlaštovkovití * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The gastrointestinal tract of vertebrates is inhabited by diverse bacterial communities that induce marked effects on the host physiology and health status. The composition of the gastrointestinal microbiota is characterized by pronounced taxonomic and functional variability among different regions of the vertebrate gastrointestinal tract. Despite the relatively solid knowledge on the among-region variations of the gastrointestinal microbiota in model mammalian species, there are only a few studies concerning among-region variations of the gastrointestinal microbiota in free-living non-mammalian vertebrate taxa. We used Illumina MiSeq sequencing of bacterial 16S rRNA amplicons to compare the diversity as well as taxonomic composition of bacterial communities in proximal vs. distal parts of the gastrointestinal tract (represented by oral swabs and faecal samples, respectively) in a wild passerine bird, the great tit (Parus major). The diversity of the oral microbiota was significantly higher compared to the faecal microbiota, whereas interindividual variation was higher in faecal than in oral samples. We also observed a pronounced difference in taxonomic content between the oral and faecal microbiota. Bacteria belonging to the phyla Proteobacteria, Firmicutes and Actinobacteria typically dominated in both oral and faecal samples. A high abundance of bacteria belonging to Tenericutes was observed only in faecal samples. Surprisingly, we found only a slight correlation between the faecal and oral microbiota at the within-individual level, suggesting that the microbial composition in these body sites is shaped by independent regulatory processes. Given the independence of these two communities at the individual level, we propose that simultaneous sampling of the faecal and oral microbiota will extend our understanding of host vs. microbiota interactions in wild populations.
- MeSH
- feces mikrobiologie MeSH
- mikrobiota * MeSH
- Passeriformes mikrobiologie MeSH
- RNA ribozomální 16S genetika MeSH
- ústa mikrobiologie MeSH
- výpočetní biologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Animal bodies are inhabited by a taxonomically and functionally diverse community of symbiotic and commensal microorganisms. From an ecological and evolutionary perspective, inter-individual variation in host-associated microbiota contributes to physiological and immune system variation. As such, host-associated microbiota may be considered an integral part of the host's phenotype, serving as a substrate for natural selection. This assumes that host-associated microbiota exhibits high temporal stability, however, and that its composition is shaped by trans-generational transfer or heritable host-associated microbiota modulators encoded by the host genome. Although this concept is widely accepted, its crucial assumptions have rarely been tested in wild vertebrate populations. We performed 16S rRNA metabarcoding on an extensive set of fecal microbiota (FM) samples from an insectivorous, long-distance migratory bird, the barn swallow (Hirundo rustica). Our data revealed clear differences in FM among juveniles and adults as regards taxonomic and functional composition, diversity and co-occurrence network complexity. Multiple FM samples from the same juvenile or adult collected within single breeding seasons exhibited higher similarity than expected by chance, as did adult FM samples over two consecutive years. Despite low effect sizes for FM stability over time at the community level, we identified an adult FM subset with relative abundances exhibiting significant temporal consistency, possibly inducing long-term effects on the host phenotype. Our data also indicate a slight maternal (but not paternal) effect on FM composition in social offspring, though this is unlikely to persist into adulthood. We discuss our findings in the context of both evolution and ecology of microbiota vs. host interactions and barn swallow biology.
- Klíčová slova
- barn swallow, fecal microbiota, gastrointestinal tract, metagenome, microbiome, symbiosis,
- Publikační typ
- časopisecké články MeSH