Nejvíce citovaný článek - PubMed ID 18326650
Super-resolution techniques expand the abilities of researchers who have the knowledge and resources to either build or purchase a system. This excludes the part of the research community without these capabilities. Here we introduce the openSIM add-on to upgrade existing optical microscopes to Structured Illumination super-resolution Microscopes (SIM). The openSIM is an open-hardware system, designed and documented to be easily duplicated by other laboratories, making super-resolution modality accessible to facilitate innovative research. The add-on approach gives a performance improvement for pre-existing lab equipment without the need to build a completely new system.
- Publikační typ
- časopisecké články MeSH
Clathrin-mediated endocytosis (CME) is the main mechanism by which mammalian cells control their cell surface proteome. Proper operation of the pivotal CME cargo adaptor AP2 requires membrane-localized Fer/Cip4 homology domain-only proteins (FCHO). Here, live-cell enhanced total internal reflection fluorescence-structured illumination microscopy shows that FCHO marks sites of clathrin-coated pit (CCP) initiation, which mature into uniform-sized CCPs comprising a central patch of AP2 and clathrin corralled by an FCHO/Epidermal growth factor potential receptor substrate number 15 (Eps15) ring. We dissect the network of interactions between the FCHO interdomain linker and AP2, which concentrates, orients, tethers, and partially destabilizes closed AP2 at the plasma membrane. AP2's subsequent membrane deposition drives its opening, which triggers FCHO displacement through steric competition with phosphatidylinositol 4,5-bisphosphate, clathrin, cargo, and CME accessory factors. FCHO can now relocate toward a CCP's outer edge to engage and activate further AP2s to drive CCP growth/maturation.
- Publikační typ
- časopisecké články MeSH
The documentation of plant growth and development requires integrative and scalable approaches to investigate and spatiotemporally resolve various dynamic processes at different levels of plant body organization. The present update deals with vigorous developments in mesoscopy, microscopy and nanoscopy methods that have been translated to imaging of plant subcellular compartments, cells, tissues and organs over the past 3 years with the aim to report recent applications and reasonable expectations from current light-sheet fluorescence microscopy (LSFM) and super-resolution microscopy (SRM) modalities. Moreover, the shortcomings and limitations of existing LSFM and SRM are discussed, particularly for their ability to accommodate plant samples and regarding their documentation potential considering spherical aberrations or temporal restrictions prohibiting the dynamic recording of fast cellular processes at the three dimensions. For a more comprehensive description, advances in living or fixed sample preparation methods are also included, supported by an overview of developments in labeling strategies successfully applied in plants. These strategies are practically documented by current applications employing model plant Arabidopsis thaliana (L.) Heynh., but also robust crop species such as Medicago sativa L. and Hordeum vulgare L. Over the past few years, the trend towards designing of integrative microscopic modalities has become apparent and it is expected that in the near future LSFM and SRM will be bridged to achieve broader multiscale plant imaging with a single platform.
Classical models of gene expression were built using genetics and biochemistry. Although these approaches are powerful, they have very limited consideration of the spatial and temporal organization of gene expression. Although the spatial organization and dynamics of RNA polymerase II (RNAPII) transcription machinery have fundamental functional consequences for gene expression, its detailed studies have been abrogated by the limits of classical light microscopy for a long time. The advent of super-resolution microscopy (SRM) techniques allowed for the visualization of the RNAPII transcription machinery with nanometer resolution and millisecond precision. In this review, we summarize the recent methodological advances in SRM, focus on its application for studies of the nanoscale organization in space and time of RNAPII transcription, and discuss its consequences for the mechanistic understanding of gene expression.
- Klíčová slova
- cell nucleus, gene expression, photoactivation, stimulated emission depletion, stochastic optical reconstruction, structured illumination, super-resolution microscopy, transcription factors, transcription foci,
- MeSH
- fluorescenční mikroskopie * metody MeSH
- genetická transkripce * MeSH
- lidé MeSH
- regulace genové exprese * MeSH
- RNA-polymerasa II metabolismus MeSH
- transkripční faktory metabolismus MeSH
- vazba proteinů MeSH
- zobrazení jednotlivé molekuly metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- RNA-polymerasa II MeSH
- transkripční faktory MeSH
Fluorescence-based microscopy as one of the standard tools in biomedical research benefits more and more from super-resolution methods, which offer enhanced spatial resolution allowing insights into new biological processes. A typical drawback of using these methods is the need for new, complex optical set-ups. This becomes even more significant when using two-photon fluorescence excitation, which offers deep tissue imaging and excellent z-sectioning. We show that the generation of striped-illumination patterns in two-photon laser scanning microscopy can readily be exploited for achieving optical super-resolution and contrast enhancement using open-source image reconstruction software. The special appeal of this approach is that even in the case of a commercial two-photon laser scanning microscope no optomechanical modifications are required to achieve this modality. Modifying the scanning software with a custom-written macro to address the scanning mirrors in combination with rapid intensity switching by an electro-optic modulator is sufficient to accomplish the acquisition of two-photon striped-illumination patterns on an sCMOS camera. We demonstrate and analyse the resulting resolution improvement by applying different recently published image resolution evaluation procedures to the reconstructed filtered widefield and super-resolved images. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 1)'.
- Klíčová slova
- SIM, laser scanning fluorescence microscopy, multi-photon fluorescence excitation, structured illumination microscopy, super-resolution optical microscopy,
- MeSH
- algoritmy MeSH
- Convallaria ultrastruktura MeSH
- ledviny ultrastruktura MeSH
- mikroskopie fluorescenční multifotonová přístrojové vybavení metody statistika a číselné údaje MeSH
- myši MeSH
- optické jevy MeSH
- optické prostředky MeSH
- počítačové zpracování obrazu metody statistika a číselné údaje MeSH
- software MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Copy number variation (CNV) is known to cause all von Willebrand disease (VWD) types, although the associated pathogenic mechanisms involved have not been extensively studied. Notably, in-frame CNV provides a unique opportunity to investigate how specific von Willebrand factor (VWF) domains influence the processing and packaging of the protein. Using multiplex ligation-dependent probe amplification, this study determined the extent to which CNV contributed to VWD in the Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease cohort, highlighting in-frame deletions of exons 3, 4-5, 32-34, and 33-34. Heterozygous in vitro recombinant VWF expression demonstrated that, although deletion of exons 3, 32-34, and 33-34 all resulted in significant reductions in total VWF (P < .0001, P < .001, and P < .01, respectively), only deletion of exons 3 and 32-34 had a significant impact on VWF secretion (P < .0001). High-resolution microscopy of heterozygous and homozygous deletions confirmed these observations, indicating that deletion of exons 3 and 32-34 severely impaired pseudo-Weibel-Palade body (WPB) formation, whereas deletion of exons 33-34 did not, with this variant still exhibiting pseudo-WPB formation similar to wild-type VWF. In-frame deletions in VWD, therefore, contribute to pathogenesis via moderate or severe defects in VWF biosynthesis and secretion.
- MeSH
- lidé MeSH
- variabilita počtu kopií segmentů DNA MeSH
- von Willebrandova nemoc, typ 1 * MeSH
- von Willebrandova nemoc * diagnóza genetika MeSH
- von Willebrandův faktor genetika MeSH
- Weibel-Paladeho granula MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- von Willebrandův faktor MeSH
BACKGROUND: Structured illumination microscopy (SIM) is a family of methods in optical fluorescence microscopy that can achieve both optical sectioning and super-resolution effects. SIM is a valuable method for high-resolution imaging of fixed cells or tissues labeled with conventional fluorophores, as well as for imaging the dynamics of live cells expressing fluorescent protein constructs. In SIM, one acquires a set of images with shifting illumination patterns. This set of images is subsequently treated with image analysis algorithms to produce an image with reduced out-of-focus light (optical sectioning) and/or with improved resolution (super-resolution). FINDINGS: Five complete, freely available SIM datasets are presented including raw and analyzed data. We report methods for image acquisition and analysis using open-source software along with examples of the resulting images when processed with different methods. We processed the data using established optical sectioning SIM and super-resolution SIM methods and with newer Bayesian restoration approaches that we are developing. CONCLUSIONS: Various methods for SIM data acquisition and processing are actively being developed, but complete raw data from SIM experiments are not typically published. Publically available, high-quality raw data with examples of processed results will aid researchers when developing new methods in SIM. Biologists will also find interest in the high-resolution images of animal tissues and cells we acquired. All of the data were processed with SIMToolbox, an open-source and freely available software solution for SIM.
- MeSH
- algoritmy MeSH
- Bayesova věta MeSH
- buněčné linie MeSH
- buňky Hep G2 MeSH
- fluorescenční mikroskopie MeSH
- králíci MeSH
- lidé MeSH
- počítačové zpracování obrazu metody MeSH
- software MeSH
- zobrazování trojrozměrné metody MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
BACKGROUND: Mitochondria of opisthokonts undergo permanent fission and fusion throughout the cell cycle. Here, we investigated the dynamics of the mitosomes, the simplest forms of mitochondria, in the anaerobic protist parasite Giardia intestinalis, a member of the Excavata supergroup of eukaryotes. The mitosomes have abandoned typical mitochondrial traits such as the mitochondrial genome and aerobic respiration and their single role known to date is the formation of iron-sulfur clusters. RESULTS: In live experiments, no fusion events were observed between the mitosomes in G. intestinalis. Moreover, the organelles were highly prone to becoming heterogeneous. This suggests that fusion is either much less frequent or even absent in mitosome dynamics. Unlike in mitochondria, division of the mitosomes was absolutely synchronized and limited to mitosis. The association of the nuclear and the mitosomal division persisted during the encystation of the parasite. During the segregation of the divided mitosomes, the subset of the organelles between two G. intestinalis nuclei had a prominent role. Surprisingly, the sole dynamin-related protein of the parasite seemed not to be involved in mitosomal division. However, throughout the cell cycle, mitosomes associated with the endoplasmic reticulum (ER), although none of the known ER-tethering complexes was present. Instead, the ER-mitosome interface was occupied by the lipid metabolism enzyme long-chain acyl-CoA synthetase 4. CONCLUSIONS: This study provides the first report on the dynamics of mitosomes. We show that together with the loss of metabolic complexity of mitochondria, mitosomes of G. intestinalis have uniquely streamlined their dynamics by harmonizing their division with mitosis. We propose that this might be a strategy of G. intestinalis to maintain a stable number of organelles during cell propagation. The lack of mitosomal fusion may also be related to the secondary reduction of the organelles. However, as there are currently no reports on mitochondrial fusion in the whole Excavata supergroup, it is possible that the absence of mitochondrial fusion is an ancestral trait common to all excavates.
- MeSH
- biologická evoluce MeSH
- dynaminy metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- Giardia lamblia cytologie metabolismus MeSH
- interfáze MeSH
- koenzym A-ligasy metabolismus MeSH
- mastná kyselina s dlouhým řetězcem-CoA-ligasa MeSH
- mitochondriální dynamika * MeSH
- mitochondrie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dynaminy MeSH
- koenzym A-ligasy MeSH
- mastná kyselina s dlouhým řetězcem-CoA-ligasa MeSH