Nejvíce citovaný článek - PubMed ID 19223331
HMGB1 and HMGB2 proteins up-regulate cellular expression of human topoisomerase IIalpha
HMGB1 and HMGB2 proteins are abundantly expressed in human embryonic stem cells (hESCs) and hESC-derived progenitor cells (neuroectodermal cells, hNECs), though their functional roles in pluripotency and the mechanisms underlying their differentiation in response to the anticancer drug etoposide remain to be elucidated. Here, we show that HMGB1 and/or HMGB2 knockdown (KD) by shRNA in hESCs did not affect the cell stemness/pluripotency regardless of etoposide treatments, while in hESC-derived neuroectodermal cells, treatment resulted in differential effects on cell survival and the generation of rosette structures. The objective of this work was to determine whether HMGB1/2 proteins could modulate the sensitivity of hESCs and hESC-derived progenitor cells (hNECs) to etoposide. We observed that HMGB1 KD knockdown (KD) and, to a lesser extent, HMGB2 KD enhanced the sensitivity of hESCs to etoposide. Enhanced accumulation of 53BP1 on telomeres was detected by confocal microscopy in both untreated and etoposide-treated HMGB1 KD hESCs and hNECs, indicating that the loss of HMGB1 could destabilize telomeres. On the other hand, decreased accumulation of 53BP1 on telomeres in etoposide-treated HMGB2 KD hESCs (but not in HMGB2 KD hNECs) suggested that the loss of HMGB2 promoted the stability of telomeres. Etoposide treatment of hESCs resulted in a significant enhancement of telomerase activity, with the highest increase observed in the HMGB2 KD cells. Interestingly, no changes in telomerase activity were found in etoposide-treated control hNECs, but HMGB2 KD (unlike HMGB1 KD) markedly decreased telomerase activity in these cells. Changes in telomerase activity in the etoposide-treated HMGB2 KD hESCs or hNECs coincided with the appearance of DNA damage markers and could already be observed before the onset of apoptosis. Collectively, we have demonstrated that HMGB1 or HMGB2 differentially modulate the impact of etoposide treatment on human embryonic stem cells and their progenitor cells, suggesting possible strategies for the enhancement of the efficacy of this anticancer drug.
- Klíčová slova
- HMGB1 and HMGB2, apoptosis, etoposide, human embryonic stem cells, neuroectodermal cells, telomerase,
- MeSH
- apoptóza účinky léků MeSH
- buněčná diferenciace genetika MeSH
- etoposid farmakologie MeSH
- kmenové buňky účinky léků MeSH
- lidé MeSH
- lidské embryonální kmenové buňky MeSH
- malá interferující RNA MeSH
- nádorové kmenové buňky účinky léků metabolismus MeSH
- nádory farmakoterapie genetika patologie MeSH
- protein HMGB1 antagonisté a inhibitory genetika MeSH
- protein HMGB2 antagonisté a inhibitory genetika MeSH
- protinádorové látky farmakologie MeSH
- regulace genové exprese u nádorů genetika MeSH
- telomerasa genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- etoposid MeSH
- HMGB1 protein, human MeSH Prohlížeč
- malá interferující RNA MeSH
- protein HMGB1 MeSH
- protein HMGB2 MeSH
- protinádorové látky MeSH
- telomerasa MeSH
DNA cruciforms play an important role in the regulation of natural processes involving DNA. These structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling. Cruciform structures are fundamentally important for a wide range of biological processes, including replication, regulation of gene expression, nucleosome structure and recombination. They also have been implicated in the evolution and development of diseases including cancer, Werner's syndrome and others.Cruciform structures are targets for many architectural and regulatory proteins, such as histones H1 and H5, topoisomerase IIβ, HMG proteins, HU, p53, the proto-oncogene protein DEK and others. A number of DNA-binding proteins, such as the HMGB-box family members, Rad54, BRCA1 protein, as well as PARP-1 polymerase, possess weak sequence specific DNA binding yet bind preferentially to cruciform structures. Some of these proteins are, in fact, capable of inducing the formation of cruciform structures upon DNA binding. In this article, we review the protein families that are involved in interacting with and regulating cruciform structures, including (a) the junction-resolving enzymes, (b) DNA repair proteins and transcription factors, (c) proteins involved in replication and (d) chromatin-associated proteins. The prevalence of cruciform structures and their roles in protein interactions, epigenetic regulation and the maintenance of cell homeostasis are also discussed.
- MeSH
- DNA vazebné proteiny chemie metabolismus MeSH
- DNA chemie metabolismus ultrastruktura MeSH
- konformace nukleové kyseliny * MeSH
- konformace proteinů MeSH
- molekulární sekvence - údaje MeSH
- regulace genové exprese * MeSH
- replikace DNA * MeSH
- sekvence nukleotidů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNA MeSH