Most cited article - PubMed ID 19345742
Schistosomes in the north: a unique finding from a prosobranch snail using molecular tools
The emergence of cercariae from infected mollusks is considered one of the most important adaptive strategies for maintaining the trematode life cycle. Short transmission opportunities of cercariae are often compensated by periodic daily rhythms in the cercarial release. However, there are virtually no data on the cercarial emergence of bird schistosomes from freshwater ecosystems in northern latitudes. We investigated the daily cercarial emergence rhythms of the bird schistosome Trichobilharzia sp. "peregra" from the snail host Radix balthica in a subarctic lake under both natural and laboratory seasonal conditions. We demonstrated a circadian rhythm with the highest emergence during the morning hours, being seasonally independent of the photo- and thermo-period regimes of subarctic summer and autumn, as well as relatively high production of cercariae at low temperatures typical of northern environments. These patterns were consistent under both field and laboratory conditions. While light intensity triggered and prolonged cercarial emergence, the temperature had little effect on cercarial rhythms but regulated seasonal output rates. This suggests an adaptive strategy of bird schistosomes to compensate for the narrow transmission window. Our results fill a gap in our knowledge of the transmission dynamics and success of bird schistosomes under high latitude conditions that may serve as a basis for elucidating future potential risks and implementing control measures related to the spread of cercarial dermatitis due to global warming.
- Keywords
- Trichobilharzia, bird schistosome, cercariae, emergence, light, temperature, trematodes,
- Publication type
- Journal Article MeSH
Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis.
- MeSH
- Biodiversity MeSH
- Disease Outbreaks MeSH
- Host Specificity MeSH
- Humans MeSH
- Bird Diseases parasitology transmission MeSH
- Skin Diseases, Parasitic epidemiology immunology parasitology prevention & control MeSH
- Birds MeSH
- Schistosomiasis epidemiology immunology parasitology prevention & control MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Cercarial dermatitis (swimmer's itch) is a common non-communicable water-borne disease. It is caused by penetration of the skin by larvae (cercariae) of schistosomatid flukes and develops as a maculopapular skin eruption after repeated contacts with the parasites. The number of outbreaks of the disease is increasing, and cercarial dermatitis can therefore be considered as an emerging problem. Swimmer's itch is mostly associated with larvae of the bird schistosomes of Trichobilharzia spp. Recent results have shown that mammalian infections (including man) manifest themselves as an allergic reaction which is able to trap and eliminate parasites in the skin. Studies on mammals experimentally infected by bird schistosome cercariae revealed, however, that during primary infection, parasites are able to escape from the skin to the lungs or central nervous system. This review covers basic information on detection of the infectious agents in the field and the clinical course of the disease, including other pathologies which may develop after infection by cercariae, and diagnosis of the disease.
- MeSH
- Central Nervous System microbiology MeSH
- Cercaria immunology MeSH
- Dermatitis diagnosis immunology parasitology MeSH
- Skin microbiology pathology MeSH
- Humans MeSH
- Disease Models, Animal MeSH
- Swimming MeSH
- Lung microbiology MeSH
- Schistosoma MeSH
- Schistosomiasis complications diagnosis immunology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH