Nejvíce citovaný článek - PubMed ID 19963289
Aging is a highly intricate biochemical process. There is strong evidence suggesting that organismal aging, age-dependent diseases, and cellular senescence are related to the mammalian target of rapamycin (mTOR) signaling pathway. The signaling pathway of mTOR has become a prominent regulatory hub, managing crucial cellular activities that significantly affect lifespan and longevity. The mTOR is involved in controlling cell growth and metabolism in response to both internal and external energy signals as well as growth factors. The interaction between mTOR and cellular homeostasis is crucial in the aging process. This extensive review summarizes the most recent findings on mTOR inhibitors in the context of aging, highlighting their complex interactions with cellular systems, effect on longevity, and potential as therapeutic approaches for age-related diseases. Rapamycin and rapalogs (analogs of rapamycin), which have been proven to be effective mTOR inhibitors, have the ability to reduce the aging process in several model species while also enhancing metabolic health and stress responses. Despite cellular factors, mTOR inhibitors have revealed a potential path for therapeutics in age-related illnesses. These results suggest mTOR inhibitors as potential therapies to address the complex aspects of age-related diseases. However, obstacles stand in the way of clinical translation. Further research is required to improve dosing protocols, reduce potential side effects, and target mTOR inhibitors precisely at specific tissues. In summary, the mTOR signaling pathway is an important node in the intricate web of aging and its associated disorders.
- Klíčová slova
- aging, anti-aging interventions, mTOR, mTOR inhibitors, rapamycin,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The development of craniofacial skeletal structures is fascinatingly complex and elucidation of the underlying mechanisms will not only provide novel scientific insights, but also help develop more effective clinical approaches to the treatment and/or prevention of the numerous congenital craniofacial malformations. To this end, we performed a genome-wide analysis of RNA transcription from non-coding regulatory elements by CAGE-sequencing of the facial mesenchyme of human embryos and cross-checked the active enhancers thus identified against genes, identified by GWAS for the normal range human facial appearance. Among the identified active cis-enhancers, several belonged to the components of the PI3/AKT/mTORC1/autophagy pathway. To assess the functional role of this pathway, we manipulated it both genetically and pharmacologically in mice and zebrafish. These experiments revealed that mTORC1 signaling modulates craniofacial shaping at the stage of skeletal mesenchymal condensations, with subsequent fine-tuning during clonal intercalation. This ability of mTORC1 pathway to modulate facial shaping, along with its evolutionary conservation and ability to sense external stimuli, in particular dietary amino acids, indicate that the mTORC1 pathway may play a role in facial phenotypic plasticity. Indeed, the level of protein in the diet of pregnant female mice influenced the activity of mTORC1 in fetal craniofacial structures and altered the size of skeletogenic clones, thus exerting an impact on the local geometry and craniofacial shaping. Overall, our findings indicate that the mTORC1 signaling pathway is involved in the effect of environmental conditions on the shaping of craniofacial structures.
To date, the most studied drug in anti-aging research is the mTOR inhibitor - rapamycin. Despite its almost perfect anti-aging profile, rapamycin exerts one significant limitation - inappropriate physicochemical properties. Therefore, we have decided to utilize virtual high-throughput screening and fragment-based design in search of novel mTOR inhibiting scaffolds with suitable physicochemical parameters. Seven lead compounds were selected from the list of obtained hits that were commercially available (4, 5, and 7) or their synthesis was feasible (1, 2, 3, and 6) and evaluated in vitro and subsequently in vivo. Of all these substances, only compound 3 demonstrated a significant cytotoxic, senolytic, and senomorphic effect on normal and cancerous cells. Further, it has been confirmed that compound 3 is a direct mTORC1 inhibitor. Last but not least, compound 3 was found to exhibit anti-SASP activity concurrently being relatively safe within the test of in vivo tolerability. All these outstanding results highlight compound 3 as a scaffold worthy of further investigation.
- Klíčová slova
- SASP phenotype, aging, anti-aging therapy, cancer, mTOR,
- Publikační typ
- časopisecké články MeSH