Nejvíce citovaný článek - PubMed ID 12150925
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
- Klíčová slova
- AKT, PI3K, PIKK, anticancer therapy, inhibitors,
- MeSH
- 1-fosfatidylinositol-3-kinasa * metabolismus terapeutické užití MeSH
- fosfatidylinositol-3-kinasy metabolismus MeSH
- inhibitory fosfoinositid-3-kinasy farmakologie MeSH
- inhibitory proteinkinas farmakologie terapeutické užití MeSH
- lidé MeSH
- nádory * farmakoterapie MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- TOR serin-threoninkinasy metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- 1-fosfatidylinositol-3-kinasa * MeSH
- fosfatidylinositol-3-kinasy MeSH
- inhibitory fosfoinositid-3-kinasy MeSH
- inhibitory proteinkinas MeSH
- protoonkogenní proteiny c-akt MeSH
- TOR serin-threoninkinasy MeSH
To date, the most studied drug in anti-aging research is the mTOR inhibitor - rapamycin. Despite its almost perfect anti-aging profile, rapamycin exerts one significant limitation - inappropriate physicochemical properties. Therefore, we have decided to utilize virtual high-throughput screening and fragment-based design in search of novel mTOR inhibiting scaffolds with suitable physicochemical parameters. Seven lead compounds were selected from the list of obtained hits that were commercially available (4, 5, and 7) or their synthesis was feasible (1, 2, 3, and 6) and evaluated in vitro and subsequently in vivo. Of all these substances, only compound 3 demonstrated a significant cytotoxic, senolytic, and senomorphic effect on normal and cancerous cells. Further, it has been confirmed that compound 3 is a direct mTORC1 inhibitor. Last but not least, compound 3 was found to exhibit anti-SASP activity concurrently being relatively safe within the test of in vivo tolerability. All these outstanding results highlight compound 3 as a scaffold worthy of further investigation.
- Klíčová slova
- SASP phenotype, aging, anti-aging therapy, cancer, mTOR,
- Publikační typ
- časopisecké články MeSH
Background: Muscle development, egg production, and plumage colors are different between native and broiler chickens. The study was designed to investigate why improved Aseel (PD4) is colorful, stronger, and grew slowly compared with the control broiler (CB). Methods: A microarray was conducted using the 7th-day embryo (7EB) and 18th-day thigh muscle (18TM) of improved Aseel and broiler, respectively. Also, we have selected 24 Gallus gallus candidate reference genes from NCBI, and total RNA was isolated from the broiler, improved Aseel embryo tissues, and their expression profiles were studied by real-time quantitative PCR (qPCR). Furthermore, microarray data were validated with qPCR using improved Aseel and broiler embryo tissues. Results: In the differential transcripts screening, all the transcripts obtained by microarray of slow and fast growth groups were screened by fold change ≥ 1 and false discovery rate (FDR) ≤ 0.05. In total, 8,069 transcripts were differentially expressed between the 7EB and 18TM of PD4 compared to the CB. A further analysis showed that a high number of transcripts are differentially regulated in the 7EB of PD4 (6,896) and fewer transcripts are differentially regulated (1,173) in the 18TM of PD4 compared to the CB. On the 7th- and 18th-day PD4 embryos, 3,890, 3,006, 745, and 428 transcripts were up- and downregulated, respectively. The commonly up- and downregulated transcripts are 91 and 44 between the 7th- and 18th-day of embryos. In addition, the best housekeeping gene was identified. Furthermore, we validated the differentially expressed genes (DEGs) related to muscle growth, myostatin signaling and development, and fatty acid metabolism genes in PD4 and CB embryo tissues by qPCR, and the results correlated with microarray expression data. Conclusion: Our study identified DEGs that regulate the myostatin signaling and differentiation pathway; glycolysis and gluconeogenesis; fatty acid metabolism; Jak-STAT, mTOR, and TGF-β signaling pathways; tryptophan metabolism; and PI3K-Akt signaling pathways in PD4. The results revealed that the gene expression architecture is present in the improved Aseel exhibiting embryo growth that will help improve muscle development, differentiation, egg production, protein synthesis, and plumage formation in PD4 native chickens. Our findings may be used as a model for improving the growth in Aseel as well as optimizing the growth in the broiler.
- Klíčová slova
- 7th- and 18th-day embryo tissues, fast and slow growth chicken, microarray, quantitative real-time PCR, reference gene,
- Publikační typ
- časopisecké články MeSH
In recent years, thyrotropin-releasing hormone (TRH) and its analogs, including taltirelin (TAL), have demonstrated a range of effects on the central nervous system that represent potential therapeutic agents for the treatment of various neurological disorders, including neurodegenerative diseases. However, the molecular mechanisms of their actions remain poorly understood. In this study, we investigated phosphosignaling dynamics in pituitary GH1 cells affected by TRH and TAL and the putative role of β-arrestin2 in mediating these effects. Our results revealed widespread alterations in many phosphosignaling pathways involving signal transduction via small GTPases, MAP kinases, Ser/Thr- and Tyr-protein kinases, Wnt/β-catenin, and members of the Hippo pathway. The differential TRH- or TAL-induced phosphorylation of numerous proteins suggests that these ligands exhibit some degree of biased agonism at the TRH receptor. The different phosphorylation patterns induced by TRH or TAL in β-arrestin2-deficient cells suggest that the β-arrestin2 scaffold is a key factor determining phosphorylation events after TRH receptor activation. Our results suggest that compounds that modulate kinase and phosphatase activity can be considered as additional adjuvants to enhance the potential therapeutic value of TRH or TAL.
- Klíčová slova
- GH1 cells, TRH receptor, small GTPase-mediated signaling, taltirelin, thyrotropin-releasing hormone, β-arrestin2,
- MeSH
- beta arrestin 1 metabolismus MeSH
- fosforylace MeSH
- hormon uvolňující thyreotropin * metabolismus farmakologie MeSH
- receptory thyroliberinu * metabolismus MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta arrestin 1 MeSH
- hormon uvolňující thyreotropin * MeSH
- receptory thyroliberinu * MeSH
DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and it can serve as a useful biomarker of prior environmental exposure and future health outcomes. This study focused on DNA methylation profiles in a human cohort, comprising 125 nonsmoking city policemen (sampled twice), living and working in three localities (Prague, Ostrava and Ceske Budejovice) of the Czech Republic, who spent the majority of their working time outdoors. The main characterization of the localities, differing by major sources of air pollution, was defined by the stationary air pollution monitoring of PM2.5, B[a]P and NO2. DNA methylation was analyzed by a genome-wide microarray method. No season-specific DNA methylation pattern was discovered; however, we identified 13,643 differentially methylated CpG loci (DML) for a comparison between the Prague and Ostrava groups. The most significant DML was cg10123377 (log2FC = -1.92, p = 8.30 × 10-4) and loci annotated to RPTOR (total 20 CpG loci). We also found two hypomethylated loci annotated to the DNA repair gene XRCC5. Groups of DML annotated to the same gene were linked to diabetes mellitus (KCNQ1), respiratory diseases (PTPRN2), the dopaminergic system of the brain and neurodegenerative diseases (NR4A2). The most significant possibly affected pathway was Axon guidance, with 86 potentially deregulated genes near DML. The cluster of gene sets that could be affected by DNA methylation in the Ostrava groups mainly includes the neuronal functions and biological processes of cell junctions and adhesion assembly. The study demonstrates that the differences in the type of air pollution between localities can affect a unique change in DNA methylation profiles across the human genome.
- Klíčová slova
- DNA methylation, air pollution, environment, epigenetics, molecular epidemiology,
- MeSH
- celogenomová asociační studie MeSH
- dospělí MeSH
- látky znečišťující vzduch škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA účinky léků MeSH
- policie * MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- znečištění ovzduší škodlivé účinky MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- látky znečišťující vzduch MeSH
Retinal progenitor cells (RPCs) divide in limited numbers to generate the cells comprising vertebrate retina. The molecular mechanism that leads RPC to the division limit, however, remains elusive. Here, we find that the hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) in an RPC subset by deletion of tuberous sclerosis complex 1 (Tsc1) makes the RPCs arrive at the division limit precociously and produce Müller glia (MG) that degenerate from senescence-associated cell death. We further show the hyperproliferation of Tsc1-deficient RPCs and the degeneration of MG in the mouse retina disappear by concomitant deletion of hypoxia-induced factor 1-alpha (Hif1a), which induces glycolytic gene expression to support mTORC1-induced RPC proliferation. Collectively, our results suggest that, by having mTORC1 constitutively active, an RPC divides and exhausts mitotic capacity faster than neighboring RPCs, and thus produces retinal cells that degenerate with aging-related changes.
- Klíčová slova
- mTORC1, Hif1a, clonal expansion, developmental biology, glycolysis, hypoxia-induced factor 1-alpha, mechanistic target of rapamycin complex 1, mitotic division limit, mouse, retinal progenitor cell,
- MeSH
- ependymální buňky patologie MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa genetika metabolismus MeSH
- hamartin genetika metabolismus MeSH
- kmenové buňky patologie MeSH
- mitóza MeSH
- mTORC1 genetika metabolismus MeSH
- myši MeSH
- retina patologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- faktor 1 indukovatelný hypoxií - podjednotka alfa MeSH
- hamartin MeSH
- Hif1a protein, mouse MeSH Prohlížeč
- mTORC1 MeSH
- Tsc1 protein, mouse MeSH Prohlížeč
The R2TP complex is a HSP90 co-chaperone, which consists of four subunits: PIH1D1, RPAP3, RUVBL1, and RUVBL2. It is involved in the assembly of large protein or protein-RNA complexes such as RNA polymerase, small nucleolar ribonucleoproteins (snoRNPs), phosphatidylinositol 3 kinase-related kinases (PIKKs), and their complexes. While RPAP3 has a HSP90 binding domain and the RUVBLs comprise ATPase activities important for R2TP functions, PIH1D1 contains a PIH-N domain that specifically recognizes phosphorylated substrates of the R2TP complex. In this review we provide an overview of the current knowledge of the R2TP complex with the focus on the recently identified structural and mechanistic features of the R2TP complex functions. We also discuss the way R2TP regulates cellular response to stress caused by low levels of nutrients or by DNA damage and its possible exploitation as a target for anti-cancer therapy.
- Klíčová slova
- DNA damage response, R2TP complex, cancer, cellular stress, protein folding,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Increased activity of the Src tyrosine protein kinase that has been observed in a large number of human malignancies appears to be a promising target for drug therapy. In the present study, a critical role of the Src activity in the deregulation of mTOR signaling pathway in Rous sarcoma virus (RSV)-transformed hamster fibroblasts, H19 cells, was shown using these cells treated with the Src-specific inhibitor, SU6656, and clones of fibroblasts expressing either the active Src or the dominant-negative Src kinase-dead mutant. Disruption of the Src kinase activity results in substantial reduction of the phosphorylation and activity of the Akt/protein kinase B (PKB), phosphorylation of tuberin (TSC2), mammalian target of rapamycin (mTOR), S6K1, ribosomal protein S6, and eukaryotic initiation factor 4E-binding protein 4E-BP1. The ectopic, active Akt1 that was expressed in Src-deficient cells significantly enhanced phosphorylation of TSC2 in these cells, but it failed to activate the inhibited components of the mTOR pathway that are downstream of TSC2. The data indicate that the Src kinase activity is essential for the activity of mTOR-dependent signaling pathway and suggest that mTOR targets may be controlled by Src independently of Akt1/TSC2 cascade in cells expressing hyperactive Src protein. These observations might have an implication in drug resistance to mTOR inhibitor-based cancer therapy in certain cell types.
- MeSH
- Adenoviridae genetika MeSH
- buněčné linie MeSH
- fosforylace MeSH
- indoly farmakologie MeSH
- inhibitory proteinkinas farmakologie MeSH
- křečci praví MeSH
- proteinkinasy metabolismus MeSH
- signální transdukce MeSH
- sulfonamidy farmakologie MeSH
- transformované buněčné linie MeSH
- virus Rousova sarkomu genetika MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- indoly MeSH
- inhibitory proteinkinas MeSH
- proteinkinasy MeSH
- SU 6656 MeSH Prohlížeč
- sulfonamidy MeSH