Nejvíce citovaný článek - PubMed ID 20839830
A reliable docking/scoring scheme based on the semiempirical quantum mechanical PM6-DH2 method accurately covering dispersion and H-bonding: HIV-1 protease with 22 ligands
The use of quantum mechanical potentials in protein-ligand affinity prediction is becoming increasingly feasible with growing computational power. To move forward, validation of such potentials on real-world challenges is necessary. To this end, we have collated an extensive set of over a thousand galectin inhibitors with known affinities and docked them into galectin-3. The docked poses were then used to systematically evaluate several modern force fields and semiempirical quantum mechanical (SQM) methods up to the tight-binding level under consistent computational workflow. Implicit solvation models available with the tested methods were used to simulate solvation effects. Overall, the best methods in this study achieved a Pearson correlation of 0.7-0.8 between the computed and experimental affinities. There were differences between the tested methods in their ability to rank ligands across the entire ligand set as well as within subsets of structurally similar ligands. A major discrepancy was observed for a subset of ligands that bind to the protein via a halogen bond, which was clearly challenging for all the tested methods. The inclusion of an entropic term calculated by the rigid-rotor-harmonic-oscillator approximation at SQM level slightly worsened correlation with experiment but brought the calculated affinities closer to experimental values. We also found that the success of the prediction strongly depended on the solvation model. Furthermore, we provide an in-depth analysis of the individual energy terms and their effect on the overall prediction accuracy.
- MeSH
- galektiny * metabolismus chemie antagonisté a inhibitory MeSH
- kvantová teorie * MeSH
- ligandy MeSH
- simulace molekulového dockingu MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- galektiny * MeSH
- ligandy MeSH
Influenza A virus (IAV) encodes a polymerase composed of three subunits: PA, with endonuclease activity, PB1 with polymerase activity and PB2 with host RNA five-prime cap binding site. Their cooperation and stepwise activation include a process called cap-snatching, which is a crucial step in the IAV life cycle. Reproduction of IAV can be blocked by disrupting the interaction between the PB2 domain and the five-prime cap. An inhibitor of this interaction called pimodivir (VX-787) recently entered the third phase of clinical trial; however, several mutations in PB2 that cause resistance to pimodivir were observed. First major mutation, F404Y, causing resistance was identified during preclinical testing, next the mutation M431I was identified in patients during the second phase of clinical trials. The mutation H357N was identified during testing of IAV strains at Centers for Disease Control and Prevention. We set out to provide a structural and thermodynamic analysis of the interactions between cap-binding domain of PB2 wild-type and PB2 variants bearing these mutations and pimodivir. Here we present four crystal structures of PB2-WT, PB2-F404Y, PB2-M431I and PB2-H357N in complex with pimodivir. We have thermodynamically analysed all PB2 variants and proposed the effect of these mutations on thermodynamic parameters of these interactions and pimodivir resistance development. These data will contribute to understanding the effect of these missense mutations to the resistance development and help to design next generation inhibitors.
- Klíčová slova
- VX-787, antivirals, influenza A polymerase, pimodivir, resistance,
- MeSH
- krystalografie rentgenová MeSH
- kvantová teorie MeSH
- molekulární modely MeSH
- mutace genetika MeSH
- mutantní proteiny metabolismus MeSH
- podjednotky proteinů antagonisté a inhibitory chemie metabolismus MeSH
- proteinové domény MeSH
- pyridiny chemie farmakologie MeSH
- pyrimidiny chemie farmakologie MeSH
- pyrroly chemie farmakologie MeSH
- RNA-dependentní RNA-polymerasa antagonisté a inhibitory chemie metabolismus MeSH
- termodynamika MeSH
- virová léková rezistence účinky léků MeSH
- virové proteiny antagonisté a inhibitory chemie metabolismus MeSH
- virus chřipky A účinky léků enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mutantní proteiny MeSH
- PB2 protein, Influenzavirus A MeSH Prohlížeč
- pimodivir MeSH Prohlížeč
- podjednotky proteinů MeSH
- pyridiny MeSH
- pyrimidiny MeSH
- pyrroly MeSH
- RNA-dependentní RNA-polymerasa MeSH
- virové proteiny MeSH
Azapeptide nitriles are postulated to reversibly covalently react with the active-site cysteine residue of cysteine proteases and form isothiosemicarbazide adducts. We investigated the interaction of azadipeptide nitriles with the cathepsin B1 drug target (SmCB1) from Schistosoma mansoni, a pathogen that causes the global neglected disease schistosomiasis. Azadipeptide nitriles were superior inhibitors of SmCB1 over their parent carba analogs. We determined the crystal structure of SmCB1 in complex with an azadipeptide nitrile and analyzed the reaction mechanism using quantum chemical calculations. The data demonstrate that azadipeptide nitriles, in contrast to their carba counterparts, undergo a change from E- to Z-configuration upon binding, which gives rise to a highly favorable energy profile of noncovalent and covalent complex formation. Finally, azadipeptide nitriles were considerably more lethal than their carba analogs against the schistosome pathogen in culture, supporting the further development of this chemotype as a treatment for schistosomiasis.
- Klíčová slova
- azapeptide inhibitors, cysteine proteases, protein structures, schistosomiasis, structure−activity relationships,
- MeSH
- kathepsin B MeSH
- proteasy * MeSH
- Schistosoma mansoni * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- kathepsin B MeSH
- proteasy * MeSH
General and reliable description of structures and energetics in protein-ligand (PL) binding using the docking/scoring methodology has until now been elusive. We address this urgent deficiency of scoring functions (SFs) by the systematic development of corrected semiempirical quantum mechanical (SQM) methods, which correctly describe all types of noncovalent interactions and are fast enough to treat systems of thousands of atoms. Two most accurate SQM methods, PM6-D3H4X and SCC-DFTB3-D3H4X, are coupled with the conductor-like screening model (COSMO) implicit solvation model in so-called "SQM/COSMO" SFs and have shown unique recognition of native ligand poses in cognate docking in four challenging PL systems, including metalloprotein. Here, we apply the two SQM/COSMO SFs to 17 diverse PL complexes and compare their performance with four widely used classical SFs (Glide XP, AutoDock4, AutoDock Vina, and UCSF Dock). We observe superior performance of the SQM/COSMO SFs and identify challenging systems. This method, due to its generality, comparability across the chemical space, and lack of need for any system-specific parameters, gives promise of becoming, after comprehensive large-scale testing in the near future, a useful computational tool in structure-based drug design and serving as a reference method for the development of other SFs.
- Publikační typ
- časopisecké články MeSH
A semiempirical quantum mechanical PM6-DH2 method accurately covering the dispersion interaction and H-bonding was used to score fifteen structurally diverse CDK2 inhibitors. The geometries of all the complexes were taken from the X-ray structures and were reoptimised by the PM6-DH2 method in continuum water. The total scoring function was constructed as an estimate of the binding free energy, i.e., as a sum of the interaction enthalpy, interaction entropy and the corrections for the inhibitor desolvation and deformation energies. The applied scoring function contains a clear thermodynamical terms and does not involve any adjustable empirical parameter. The best correlations with the experimental inhibition constants (ln K (i)) were found for bare interaction enthalpy (r (2) = 0.87) and interaction enthalpy corrected for ligand desolvation and deformation energies (r (2) = 0.77); when the entropic term was considered, however, the correlation becomes worse but still acceptable (r (2) = 0.52). The resulting correlation based on the PM6-DH2 scoring function is better than previously published function based on various docking/scoring, SAR studies or advanced QM/MM approach, however, the robustness is limited by number of available experimental data used in the correlation. Since a very similar correlation between the experimental and theoretical results was found also for a different system of the HIV-1 protease, the suggested scoring function based on the PM6-DH2 method seems to be applicable in drug design, even if diverse protein-ligand complexes have to be ranked.
- MeSH
- cyklin-dependentní kinasa 2 antagonisté a inhibitory metabolismus MeSH
- inhibitory proteinkinas chemie farmakologie MeSH
- kvantová teorie MeSH
- lidé MeSH
- ligandy MeSH
- molekulární modely MeSH
- racionální návrh léčiv * MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CDK2 protein, human MeSH Prohlížeč
- cyklin-dependentní kinasa 2 MeSH
- inhibitory proteinkinas MeSH
- ligandy MeSH