Nejvíce citovaný článek - PubMed ID 20968290
Wounds are structural and functional disruptions of skin that occur because of trauma, surgery, acute illness, or chronic disease conditions. Chronic wounds are caused by a breakdown in the finely coordinated cascade of events that occurs during healing. Wound healing is a long process that split into at least three continuous and overlapping processes: an inflammatory response, a proliferative phase, and finally the tissue remodeling. Therefore, these processes are extensively studied to develop novel therapeutics in order to achieve maximum recovery with minimum scarring. Several growth hormones and cytokines secreted at the site of lesions tightly regulates the healing processes. The traditional approach for wound management has been represented by topical treatments. Metal nanoparticles (e.g., silver, gold and zinc) are increasingly being employed in dermatology due to their favorable effects on healing, as well as in treating and preventing secondary bacterial infections. In the current review, a brief introduction on traditional would healing approach is provided, followed by focus on the potential of wound dressing therapeutic techniques functionalized with Ag-NPs.
- Klíčová slova
- dermatology, inflammatory response, silver nanoparticles, wound, wound healing,
- MeSH
- antibakteriální látky terapeutické užití MeSH
- hojení ran MeSH
- kovové nanočástice * chemie terapeutické užití MeSH
- obvazy MeSH
- stříbro * chemie terapeutické užití MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antibakteriální látky MeSH
- stříbro * MeSH
- zlato MeSH
Prosthetic joint infection (PJI) is a feared complication of total joint arthroplasty associated with increased morbidity and mortality. There is a growing body of evidence that bacterial colonization and biofilm formation are critical pathogenic events in PJI. Thus, the choice of biomaterials for implanted prostheses and their surface modifications may significantly influence the development of PJI. Currently, silver nanoparticle (AgNP) technology is receiving much interest in the field of orthopaedics for its antimicrobial properties and a strong anti-biofilm potential. The great advantage of AgNP surface modification is a minimal release of active substances into the surrounding tissue and a long period of effectiveness. As a result, a controlled release of AgNPs could ensure antibacterial protection throughout the life of the implant. Moreover, the antibacterial effect of AgNPs may be strengthened in combination with conventional antibiotics and other antimicrobial agents. Here, our main attention is devoted to general guidelines for the design of antibacterial biomaterials protected by AgNPs, its benefits, side effects and future perspectives in PJI prevention.
Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW), biological cell culture medium without addition of protein (BM), and BM supplemented with common serum protein (BMP). The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible.
- Klíčová slova
- biological fluids, colloidal stability, maghemite, nanoparticles, protein interaction, silver, surface coating,
- Publikační typ
- časopisecké články MeSH