Nejvíce citovaný článek - PubMed ID 21282941
Insights into the meiotic behavior and evolution of multiple sex chromosome systems in spiders
BACKGROUND/OBJECTIVES: Arachnids are a megadiverse arthropod group. The present study investigated the chromosomes of pedipalpid tetrapulmonates (orders Amblypygi, Thelyphonida, Schizomida) and two arachnid orders of uncertain phylogenetic placement, Ricinulei and Solifugae, to reconstruct their karyotype evolution. Except for amblypygids, the cytogenetics of these arachnid orders was almost unknown prior to the present study. METHODS: Chromosomes were investigated using methods of standard (Giemsa-stained preparations, banding techniques) and molecular cytogenetics (fluorescence in situ hybridization, comparative genomic hybridization). RESULTS AND CONCLUSIONS: New data for 38 species, combined with previously published data, suggest that ancestral arachnids possessed low to moderate 2n (22-40), monocentric chromosomes, one nucleolus organizer region (NOR), low levels of heterochromatin and recombinations, and no or homomorphic sex chromosomes. Karyotypes of Pedipalpi and Solifugae diversified via centric fusions, pericentric inversions, and changes in the pattern of NORs and, in solifuges, also through tandem fusions. Some solifuges display an enormous amount of constitutive heterochromatin and high NOR number. It is hypothesized that the common ancestor of amblypygids, thelyphonids, and spiders exhibited a homomorphic XY system, and that telomeric heterochromatin and NORs were involved in the evolution of amblypygid sex chromosomes. The new findings support the Cephalosomata clade (acariforms, palpigrades, and solifuges). Hypotheses concerning the origin of acariform holocentric chromosomes are presented. Unlike current phylogenetic hypotheses, the results suggest a sister relationship between Schizomida and a clade comprising other tetrapulmonates as well as a polyploidization in the common ancestor of the clade comprising Araneae, Amblypygi, and Thelyphonida.
- Klíčová slova
- Ricinulei, heterochromatin, holocentric, nucleolus organizer region, polyploidy, sex chromosome, solifuge, somatic pairing, spider, telomere,
- MeSH
- fylogeneze * MeSH
- hybridizace in situ fluorescenční MeSH
- karyotyp * MeSH
- molekulární evoluce * MeSH
- organizátor jadérka genetika MeSH
- pavoukovci * genetika klasifikace MeSH
- srovnávací genomová hybridizace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The mygalomorph spiders of the family Atypidae are among the most archaic spiders. The genus Atypus Latreille, 1804 occurs in Eurasia and northern Africa, with a single enigmatic species, Atypus snetsingeri Sarno, 1973, known only from a small area in southeastern Pennsylvania in eastern USA. A close relationship to European species could be assumed based on geographic proximity, but A. snetsingeri more closely resembled Asian species. This study was undertaken to learn more about the genetics of A. snetsingeri, its habitat requirements and natural history. Molecular markers (CO1 sequences) were compared to available data for other atypids and showed that A. snetsingeri is identical with A. karschi Dönitz, 1887 native to East Asia. Natural history parameters in Pennsylvania were also similar in every respect to A. karschi in Japan, therefore, we propose that the spider is an introduced species and the specific epithet snetsingeri is relegated to a junior synonym of A. karschi. Cytogenetic analysis showed an X0 sex chromosome system (42 chromosomes in females, 41 in males) and we also detected nucleolus organizing regions and heterochromatin, the latter for the first time in the Atypoidea. In Pennsylvania the spider is found in a variety of habitats, from forests to suburban shrubbery, where the above-ground webs are usually attached vertically to trees, shrubs, or walls, although other webs are oriented horizontally near the ground. Prey include millipedes, snails, woodlice, carabid beetles and earthworms. Atypus karschi is the first known case of an introduced purse-web spider. It is rarely noticed but well-established within its range in southeastern Pennsylvania.
- MeSH
- ekosystém MeSH
- lesy MeSH
- pavouci * genetika MeSH
- pohlavní chromozomy MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Pennsylvania MeSH
BACKGROUND: Despite progress in genomic analysis of spiders, their chromosome evolution is not satisfactorily understood. Most information on spider chromosomes concerns the most diversified clade, entelegyne araneomorphs. Other clades are far less studied. Our study focused on haplogyne araneomorphs, which are remarkable for their unusual sex chromosome systems and for the co-evolution of sex chromosomes and nucleolus organizer regions (NORs); some haplogynes exhibit holokinetic chromosomes. To trace the karyotype evolution of haplogynes on the family level, we analysed the number and morphology of chromosomes, sex chromosomes, NORs, and meiosis in pholcids, which are among the most diverse haplogyne families. The evolution of spider NORs is largely unknown. RESULTS: Our study is based on an extensive set of species representing all major pholcid clades. Pholcids exhibit a low 2n and predominance of biarmed chromosomes, which are typical haplogyne features. Sex chromosomes and NOR patterns of pholcids are diversified. We revealed six sex chromosome systems in pholcids (X0, XY, X1X20, X1X2X30, X1X2Y, and X1X2X3X4Y). The number of NOR loci ranges from one to nine. In some clades, NORs are also found on sex chromosomes. CONCLUSIONS: The evolution of cytogenetic characters was largely derived from character mapping on a recently published molecular phylogeny of the family. Based on an extensive set of species and mapping of their characters, numerous conclusions regarding the karyotype evolution of pholcids and spiders can be drawn. Our results suggest frequent autosome-autosome and autosome-sex chromosome rearrangements during pholcid evolution. Such events have previously been attributed to the reproductive isolation of species. The peculiar X1X2Y system is probably ancestral for haplogynes. Chromosomes of the X1X2Y system differ considerably in their pattern of evolution. In some pholcid clades, the X1X2Y system has transformed into the X1X20 or XY systems, and subsequently into the X0 system. The X1X2X30 system of Smeringopus pallidus probably arose from the X1X20 system by an X chromosome fission. The X1X2X3X4Y system of Kambiwa probably evolved from the X1X2Y system by integration of a chromosome pair. Nucleolus organizer regions have frequently expanded on sex chromosomes, most probably by ectopic recombination. Our data suggest the involvement of sex chromosome-linked NORs in achiasmatic pairing.
- Klíčová slova
- Achiasmatic pairing, Diffuse stage, Entelegyne, Haplogyne, Inactivation, Rearrangement, Segregation, Y chromosome, rDNA,
- MeSH
- karyotyp MeSH
- karyotypizace MeSH
- meióza genetika MeSH
- pavouci * genetika MeSH
- pohlavní chromozomy genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Spiders are an intriguing model to analyse sex chromosome evolution because of their peculiar multiple X chromosome systems. Y chromosomes were considered rare in this group, arising after neo-sex chromosome formation by X chromosome-autosome rearrangements. However, recent findings suggest that Y chromosomes are more common in spiders than previously thought. Besides neo-sex chromosomes, they are also involved in the ancient X1X2Y system of haplogyne spiders, whose origin is unknown. Furthermore, spiders seem to exhibit obligatorily one or two pairs of cryptic homomorphic XY chromosomes (further cryptic sex chromosome pairs, CSCPs), which could represent the ancestral spider sex chromosomes. Here, we analyse the molecular differentiation of particular types of spider Y chromosomes in a representative set of ten species by comparative genomic hybridisation (CGH). We found a high Y chromosome differentiation in haplogyne species with X1X2Y system except for Loxosceles spp. CSCP chromosomes exhibited generally low differentiation. Possible mechanisms and factors behind the observed patterns are discussed. The presence of autosomal regions marked predominantly or exclusively with the male or female probe was also recorded. We attribute this pattern to intraspecific variability in the copy number and distribution of certain repetitive DNAs in spider genomes, pointing thus to the limits of CGH in this arachnid group. In addition, we confirmed nonrandom association of chromosomes belonging to particular CSCPs at spermatogonial mitosis and spermatocyte meiosis and their association with multiple Xs throughout meiosis. Taken together, our data suggest diverse evolutionary pathways of molecular differentiation in different types of spider Y chromosomes.
- Klíčová slova
- Arthropoda, X1X20, X1X2Y, Y chromosome, achiasmatic pairing, in situ hybridisation, karyotype evolution, male-specific region, neo-sex chromosome, repetitive DNA,
- MeSH
- biologická evoluce * MeSH
- genom * MeSH
- karyotyp MeSH
- meióza * MeSH
- pavouci genetika MeSH
- pohlavní chromozomy genetika MeSH
- sexuální diferenciace * MeSH
- srovnávací genomová hybridizace metody MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Spiders represent one of the most studied arachnid orders. They are particularly intriguing from a cytogenetic point of view, due to their complex and dynamic sex chromosome determination systems. Despite intensive research on this group, cytogenetic data from African spiders are still mostly lacking. In this study, we describe the karyotypes of 38 species of spiders belonging to 16 entelegyne families from South Africa and Namibia. In the majority of analysed families, the observed chromosome numbers and morphology (mainly acrocentric) did not deviate from the family-level cytogenetic characteristics based on material from other continents: Tetragnathidae (2n♂ = 24), Ctenidae and Oxyopidae (2n♂ = 28), Sparassidae (2n♂ = 42), Gnaphosidae, Trachelidae and Trochanteriidae (2n♂ = 22), and Salticidae (2n♂ = 28). On the other hand, we identified interspecific variability within Hersiliidae (2n♂ = 33 and 35), Oecobiidae (2n♂ = 19 and 25), Selenopidae (2n♂ = 26 and 29) and Theridiidae (2n♂ = 21 and 22). We examined the karyotypes of Ammoxenidae and Gallieniellidae for the first time. Their diploid counts (2n♂ = 22) correspond to the superfamily Gnaphosoidea and support their placement in this lineage. On the other hand, the karyotypes of Prodidominae (2n♂ = 28 and 29) contrast with all other Gnaphosoidea. Similarly, the unusually high diploid number in Borboropactus sp. (2n♂ = 28) within the otherwise cytogenetically uniform family Thomisidae (mainly 2n♂ = 21-24) supports molecular data suggesting a basal position of the genus in the family. The implementation of FISH methods for visualisation of rDNA clusters facilitated the detection of complex dynamics of numbers of these loci. We identified up to five loci of the 18S rDNA clusters in our samples. Three different sex chromosome systems (X0, X1X20 and X1X2X30) were also detected among the studied taxa.
- Klíčová slova
- Araneoidea, Gnaphosoidea, Oecobioidea, Karyotype, NOR, RTA clade, acrocentric, meiosis, rDNA FISH, sex chromosomes,
- Publikační typ
- časopisecké články MeSH
Spiders are an ancient and extremely diverse animal order. They show a considerable diversity of genome sizes, karyotypes and sex chromosomes, which makes them promising models to analyse the evolution of these traits. Our study is focused on the evolution of the genome and chromosomes in haplogyne spiders with holokinetic chromosomes. Although holokinetic chromosomes in spiders were discovered a long time ago, information on their distribution and evolution in these arthropods is very limited. Here we show that holokinetic chromosomes are an autapomorphy of the superfamily Dysderoidea. According to our hypothesis, the karyotype of ancestral Dysderoidea comprised three autosome pairs and a single X chromosome. The subsequent evolution has frequently included inverted meiosis of the sex chromosome and an increase of 2n. We demonstrate that caponiids, a sister clade to Dysderoidea, have enormous genomes and high diploid and sex chromosome numbers. This pattern suggests a polyploid event in the ancestors of caponiids. Holokinetic chromosomes could have arisen by subsequent multiple chromosome fusions and a considerable reduction of the genome size. We propose that spider sex chromosomes probably do not pose a major barrier to polyploidy due to specific mechanisms that promote the integration of sex chromosome copies into the genome.
- MeSH
- genom * MeSH
- karyotyp * MeSH
- meióza MeSH
- molekulární evoluce * MeSH
- pavouci genetika MeSH
- polyploidie * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Chromosomal rearrangements have the potential to limit the rate and pattern of gene flow within and between species and thus play a direct role in promoting and maintaining speciation. Wood white butterflies of the genus Leptidea are excellent models to study the role of chromosome rearrangements in speciation because they show karyotype variability not only among but also within species. In this work, we investigated genome architecture of three cryptic Leptidea species (L. juvernica, L. sinapis and L. reali) by standard and molecular cytogenetic techniques in order to reveal causes of the karyotype variability. RESULTS: Chromosome numbers ranged from 2n = 85 to 91 in L. juvernica and 2n = 69 to 73 in L. sinapis (both from Czech populations) to 2n = 51 to 55 in L. reali (Spanish population). We observed significant differences in chromosome numbers and localization of cytogenetic markers (rDNA and H3 histone genes) within the offspring of individual females. Using FISH with the (TTAGG) n telomeric probe we also documented the presence of multiple chromosome fusions and/or fissions and other complex rearrangements. Thus, the intraspecific karyotype variability is likely due to irregular chromosome segregation of multivalent meiotic configurations. The analysis of female meiotic chromosomes by GISH and CGH revealed multiple sex chromosomes: W1W2W3Z1Z2Z3Z4 in L. juvernica, W1W2W3Z1Z2Z3 in L. sinapis and W1W2W3W4Z1Z2Z3Z4 in L. reali. CONCLUSIONS: Our results suggest a dynamic karyotype evolution and point to the role of chromosomal rearrangements in the speciation of Leptidea butterflies. Moreover, our study revealed a curious sex determination system with 3-4 W and 3-4 Z chromosomes, which is unique in the Lepidoptera and which could also have played a role in the speciation process of the three Leptidea species.
- MeSH
- biologická evoluce * MeSH
- histony genetika MeSH
- hmyzí proteiny genetika MeSH
- karyotyp MeSH
- motýli klasifikace genetika MeSH
- pohlavní chromozomy MeSH
- procesy určující pohlaví * MeSH
- ribozomální DNA genetika MeSH
- tok genů MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histony MeSH
- hmyzí proteiny MeSH
- ribozomální DNA MeSH