The canonical DNA polymerases involved in the replication of the genome are unable to fully replicate the physical ends of linear chromosomes, called telomeres. Chromosomal termini thus become shortened in each cell cycle. The maintenance of telomeres requires telomerase-a specific RNA-dependent DNA polymerase enzyme complex that carries its own RNA template and adds telomeric repeats to the ends of chromosomes using a reverse transcription mechanism. Both core subunits of telomerase-its catalytic telomerase reverse transcriptase (TERT) subunit and telomerase RNA (TR) component-were identified in quick succession in Tetrahymena more than 30 years ago. Since then, both telomerase subunits have been described in various organisms including yeasts, mammals, birds, reptiles and fish. Despite the fact that telomerase activity in plants was described 25 years ago and the TERT subunit four years later, a genuine plant TR has only recently been identified by our group. In this review, we focus on the structure, composition and function of telomerases. In addition, we discuss the origin and phylogenetic divergence of this unique RNA-dependent DNA polymerase as a witness of early eukaryotic evolution. Specifically, we discuss the latest information regarding the recently discovered TR component in plants, its conservation and its structural features.
- Klíčová slova
- evolution, plant TERT, plant TR., telomerase, telomerase RNA (TR), telomerase reverse transcriptase (TERT),
- MeSH
- biologická evoluce * MeSH
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- Eukaryota klasifikace genetika metabolismus MeSH
- fylogeneze MeSH
- lidé MeSH
- RNA fyziologie MeSH
- telomerasa chemie fyziologie MeSH
- telomery metabolismus MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- RNA MeSH
- telomerasa MeSH
- telomerase RNA MeSH Prohlížeč
Parallel research on multiple model organisms shows that while some principles of telomere biology are conserved among all eukaryotic kingdoms, we also find some deviations that reflect different evolutionary paths and life strategies, which may have diversified after the establishment of telomerase as a primary mechanism for telomere maintenance. Much more than animals, plants have to cope with environmental stressors, including genotoxic factors, due to their sessile lifestyle. This is, in principle, made possible by an increased capacity and efficiency of the molecular systems ensuring maintenance of genome stability, as well as a higher tolerance to genome instability. Furthermore, plant ontogenesis differs from that of animals in which tissue differentiation and telomerase silencing occur during early embryonic development, and the "telomere clock" in somatic cells may act as a preventive measure against carcinogenesis. This does not happen in plants, where growth and ontogenesis occur through the serial division of apical meristems consisting of a small group of stem cells that generate a linear series of cells, which differentiate into an array of cell types that make a shoot and root. Flowers, as generative plant organs, initiate from the shoot apical meristem in mature plants which is incompatible with the human-like developmental telomere shortening. In this review, we discuss differences between human and plant telomere biology and the implications for aging, genome stability, and cell and organism survival. In particular, we provide a comprehensive comparative overview of telomere proteins acting in humans and in Arabidopsis thaliana model plant, and discuss distinct epigenetic features of telomeric chromatin in these species.
- Klíčová slova
- Arabidopsis, aging, chromatin, epigenetics, human, review, telomerase, telomere,
- MeSH
- chromatin metabolismus MeSH
- epigeneze genetická MeSH
- lidé MeSH
- rostliny metabolismus MeSH
- stárnutí buněk genetika MeSH
- telomerasa metabolismus MeSH
- telomery metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- chromatin MeSH
- telomerasa MeSH
Arabidopsis and human ARM protein interact with telomerase. Deregulated mRNA levels of DNA repair and ribosomal protein genes in an Arabidopsis arm mutant suggest non-telomeric ARM function. The human homolog ARMC6 interacts with hTRF2. Telomerase maintains telomeres and has proposed non-telomeric functions. We previously identified interaction of the C-terminal domain of Arabidopsis telomerase reverse transcriptase (AtTERT) with an armadillo/β-catenin-like repeat (ARM) containing protein. Here we explore protein-protein interactions of the ARM protein, AtTERT domains, POT1a, TRF-like family and SMH family proteins, and the chromatin remodeling protein CHR19 using bimolecular fluorescence complementation (BiFC), yeast two-hybrid (Y2H) analysis, and co-immunoprecipitation. The ARM protein interacts with both the N- and C-terminal domains of AtTERT in different cellular compartments. ARM interacts with CHR19 and TRF-like I family proteins that also bind AtTERT directly or through interaction with POT1a. The putative human ARM homolog co-precipitates telomerase activity and interacts with hTRF2 protein in vitro. Analysis of Arabidopsis arm mutants shows no obvious changes in telomere length or telomerase activity, suggesting that ARM is not essential for telomere maintenance. The observed interactions with telomerase and Myb-like domain proteins (TRF-like family I) may therefore reflect possible non-telomeric functions. Transcript levels of several DNA repair and ribosomal genes are affected in arm mutants, and ARM, likely in association with other proteins, suppressed expression of XRCC3 and RPSAA promoter constructs in luciferase reporter assays. In conclusion, ARM can participate in non-telomeric functions of telomerase, and can also perform its own telomerase-independent functions.
- Klíčová slova
- ARMC6, Armadillo/β-catenin-like repeat, AtTERT, Homologous recombination, Protein–protein interaction, Telomerase activity,
- MeSH
- Arabidopsis enzymologie genetika MeSH
- holoenzymy MeSH
- lidé MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteiny s doménou armadillo genetika metabolismus MeSH
- reportérové geny MeSH
- techniky dvojhybridového systému MeSH
- telomerasa genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ARMC6 protein, human MeSH Prohlížeč
- holoenzymy MeSH
- proteiny huseníčku MeSH
- proteiny s doménou armadillo MeSH
- telomerasa MeSH
The life cycle of telomerase involves dynamic and complex interactions between proteins within multiple macromolecular networks. Elucidation of these associations is a key to understanding the regulation of telomerase under diverse physiological and pathological conditions from telomerase biogenesis, through telomere recruitment and elongation, to its non-canonical activities outside of telomeres. We used tandem affinity purification coupled to mass spectrometry to build an interactome of the telomerase catalytic subunit AtTERT, using Arabidopsis thaliana suspension cultures. We then examined interactions occurring at the AtTERT N-terminus, which is thought to fold into a discrete domain connected to the rest of the molecule via a flexible linker. Bioinformatic analyses revealed that interaction partners of AtTERT have a range of molecular functions, a subset of which is specific to the network around its N-terminus. A significant number of proteins co-purifying with the N-terminal constructs have been implicated in cell cycle and developmental processes, as would be expected of bona fide regulatory interactions and we have confirmed experimentally the direct nature of selected interactions. To examine AtTERT protein-protein interactions from another perspective, we also analysed AtTERT interdomain contacts to test potential dimerization of AtTERT. In total, our results provide an insight into the composition and architecture of the plant telomerase complex and this will aid in delineating molecular mechanisms of telomerase functions.
- Klíčová slova
- AtPOT1a, PURα1, Pontin, Reptin, TAP-MS, Telomerase,
- MeSH
- Arabidopsis enzymologie genetika MeSH
- buněčné jádro enzymologie MeSH
- chromatografie afinitní MeSH
- exprese genu MeSH
- interakční proteinové domény a motivy MeSH
- kultivované buňky MeSH
- mapování interakce mezi proteiny MeSH
- mapy interakcí proteinů MeSH
- multimerizace proteinu MeSH
- proteiny huseníčku genetika izolace a purifikace metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- telomerasa genetika izolace a purifikace metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny huseníčku MeSH
- telomerasa MeSH
Recently we characterised TRB1, a protein from a single-myb-histone family, as a structural and functional component of telomeres in Arabidopsis thaliana. TRB proteins, besides their ability to bind specifically to telomeric DNA using their N-terminally positioned myb-like domain of the same type as in human shelterin proteins TRF1 or TRF2, also possess a histone-like domain which is involved in protein-protein interactions e.g., with POT1b. Here we set out to investigate the genome-wide localization pattern of TRB1 to reveal its preferential sites of binding to chromatin in vivo and its potential functional roles in the genome-wide context. Our results demonstrate that TRB1 is preferentially associated with promoter regions of genes involved in ribosome biogenesis, in addition to its roles at telomeres. This preference coincides with the frequent occurrence of telobox motifs in the upstream regions of genes in this category, but it is not restricted to the presence of a telobox. We conclude that TRB1 shows a specific genome-wide distribution pattern which suggests its role in regulation of genes involved in biogenesis of the translational machinery, in addition to its preferential telomeric localization.
- Klíčová slova
- Arabidopsis thaliana, ChIP-seq, Ribosome, Telomere repeat binding (TRB), Translation machinery, snoRNA,
- MeSH
- Arabidopsis genetika metabolismus MeSH
- genová knihovna MeSH
- histony metabolismus MeSH
- molekulární sekvence - údaje MeSH
- nukleotidové motivy MeSH
- promotorové oblasti (genetika) genetika MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteiny vázající telomery genetika metabolismus MeSH
- proteosyntéza MeSH
- ribozomy genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- telomery metabolismus MeSH
- vazba proteinů MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histony MeSH
- proteiny huseníčku MeSH
- proteiny vázající telomery MeSH
- TRB1 protein, Arabidopsis MeSH Prohlížeč
Telomerase-reverse transcriptase (TERT) plays an essential catalytic role in maintaining telomeres. However, in animal systems telomerase plays additional non-telomeric functional roles. We previously screened an Arabidopsis cDNA library for proteins that interact with the C-terminal extension (CTE) TERT domain and identified a nuclear-localized protein that contains an RNA recognition motif (RRM). This RRM-protein forms homodimers in both plants and yeast. Mutation of the gene encoding the RRM-protein had no detectable effect on plant growth and development, nor did it affect telomerase activity or telomere length in vivo, suggesting a non-telomeric role for TERT/RRM-protein complexes. The gene encoding the RRM-protein is highly expressed in leaf and reproductive tissues. We further screened an Arabidopsis cDNA library for proteins that interact with the RRM-protein and identified five interactors. These proteins are involved in numerous non-telomere-associated cellular activities. In plants, the RRM-protein, both alone and in a complex with its interactors, localizes to nuclear speckles. Transcriptional analyses in wild-type and rrm mutant plants, as well as transcriptional co-analyses, suggest that TERT, the RRM-protein, and the RRM-protein interactors may play important roles in non-telomeric cellular functions.
A comparative approach in biology is needed to assess the universality of rules governing this discipline. In plant telomere research, most of the key principles were established based on studies in only single model plant, Arabidopsis thaliana. These principles include the absence of telomere shortening during plant development and the corresponding activity of telomerase in dividing (meristem) plant cells. Here we examine these principles in Physcomitrella patens as a representative of lower plants. To follow telomerase expression, we first characterize the gene coding for the telomerase reverse transcriptase subunit PpTERT in P. patens, for which only incomplete prediction has been available so far. In protonema cultures of P. patens, growing by filament apical cell division, the proportion of apical (dividing) cells was quantified and telomere length, telomerase expression and activity were determined. Our results show telomere stability and demonstrate proportionality of telomerase activity and expression with the number of apical cells. In addition, we analyze telomere maintenance in mre11, rad50, nbs1, ku70 and lig4 mutants of P. patens and compare the impact of these mutations in double-strand-break (DSB) repair pathways with earlier observations in corresponding A. thaliana mutants. Telomere phenotypes are absent and DSB repair kinetics is not affected in P. patens mutants for DSB factors involved in non-homologous end joining (NHEJ). This is compliant with the overall dominance of homologous recombination over NHEJ pathways in the moss, contrary to the inverse situation in flowering plants.
- MeSH
- Arabidopsis genetika MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná genetika MeSH
- dvouřetězcové zlomy DNA MeSH
- fenotyp MeSH
- fylogeneze MeSH
- homeostáza telomer genetika MeSH
- homologní rekombinace MeSH
- mechy genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- oprava DNA * MeSH
- rostlinné proteiny genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- sekvenční seřazení MeSH
- telomerasa genetika metabolismus MeSH
- telomery genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- rostlinné proteiny MeSH
- telomerasa MeSH