Most cited article - PubMed ID 21659197
Rapid evolution of parental rDNA in a synthetic tobacco allotetraploid line
The classical model of concerted evolution states that hundreds to thousands of ribosomal DNA (rDNA) units undergo homogenization, making the multiple copies of the individual units more uniform across the genome than would be expected given mutation frequencies and gene redundancy. While the universality of this over 50-year-old model has been confirmed in a range of organisms, advanced high throughput sequencing techniques have also revealed that rDNA homogenization in many organisms is partial and, in rare cases, even apparently failing. The potential underpinning processes leading to unexpected intragenomic variation have been discussed in a number of studies, but a comprehensive understanding remains to be determined. In this work, we summarize information on variation or polymorphisms in rDNAs across a wide range of taxa amongst animals, fungi, plants, and protists. We discuss the definition and description of concerted evolution and describe whether incomplete concerted evolution of rDNAs predominantly affects coding or non-coding regions of rDNA units and if it leads to the formation of pseudogenes or not. We also discuss the factors contributing to rDNA variation, such as interspecific hybridization, meiotic cycles, rDNA expression status, genome size, and the activity of effector genes involved in genetic recombination, epigenetic modifications, and DNA editing. Finally, we argue that a combination of approaches is needed to target genetic and epigenetic phenomena influencing incomplete concerted evolution, to give a comprehensive understanding of the evolution and functional consequences of intragenomic variation in rDNA.
- MeSH
- Phylogeny MeSH
- Genetic Variation * MeSH
- Fungi genetics MeSH
- Evolution, Molecular MeSH
- Mutation MeSH
- Polymorphism, Genetic * MeSH
- DNA, Ribosomal genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- DNA, Ribosomal MeSH
In plants, genome duplication followed by genome diversification and selection is recognized as a major evolutionary process. Rapid epigenetic and genetic changes that affect the transcription of parental genes are frequently observed after polyploidization. The pattern of alternative splicing is also frequently altered, yet the related molecular processes remain largely unresolved. Here, we study the inheritance and expression of parental variants of three floral organ identity genes in allotetraploid tobacco. DEFICIENS and GLOBOSA are B-class genes, and AGAMOUS is a C-class gene. Parental variants of these genes were found to be maintained in the tobacco genome, and the respective mRNAs were present in flower buds in comparable amounts. However, among five tobacco cultivars, we identified two in which the majority of paternal GLOBOSA pre-mRNA transcripts undergo exon 3 skipping, producing an mRNA with a premature termination codon. At the DNA level, we identified a G-A transition at the very last position of exon 3 in both cultivars. Although alternative splicing resulted in a dramatic decrease in full-length paternal GLOBOSA mRNA, no phenotypic effect was observed. Our finding likely serves as an example of the initiation of homoeolog diversification in a relatively young polyploid genome.
- Keywords
- Alternative splicing, Floral genes, Flowering, Polyploidy, Tobacco,
- MeSH
- Alternative Splicing genetics MeSH
- Point Mutation genetics MeSH
- Exons genetics MeSH
- Transcription, Genetic * MeSH
- Homeodomain Proteins biosynthesis genetics MeSH
- Nucleotides genetics MeSH
- Polyploidy MeSH
- RNA Precursors genetics MeSH
- Gene Expression Regulation, Plant MeSH
- Plant Proteins biosynthesis genetics MeSH
- Nicotiana genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- GLOBOSA protein, plant MeSH Browser
- Homeodomain Proteins MeSH
- Nucleotides MeSH
- RNA Precursors MeSH
- Plant Proteins MeSH
BACKGROUND: Tandemly arranged nuclear ribosomal DNA (rDNA), encoding 18S, 5.8S and 26S ribosomal RNA (rRNA), exhibit concerted evolution, a pattern thought to result from the homogenisation of rDNA arrays. However rDNA homogeneity at the single nucleotide polymorphism (SNP) level has not been detailed in organisms with more than a few hundred copies of the rDNA unit. Here we study rDNA complexity in species with arrays consisting of thousands of units. METHODS: We examined homogeneity of genic (18S) and non-coding internally transcribed spacer (ITS1) regions of rDNA using Roche 454 and/or Illumina platforms in four angiosperm species, Nicotiana sylvestris, N. tomentosiformis, N. otophora and N. kawakamii. We compared the data with Southern blot hybridisation revealing the structure of intergenic spacer (IGS) sequences and with the number and distribution of rDNA loci. RESULTS AND CONCLUSIONS: In all four species the intragenomic homogeneity of the 18S gene was high; a single ribotype makes up over 90% of the genes. However greater variation was observed in the ITS1 region, particularly in species with two or more rDNA loci, where >55% of rDNA units were a single ribotype, with the second most abundant variant accounted for >18% of units. IGS heterogeneity was high in all species. The increased number of ribotypes in ITS1 compared with 18S sequences may reflect rounds of incomplete homogenisation with strong selection for functional genic regions and relaxed selection on ITS1 variants. The relationship between the number of ITS1 ribotypes and the number of rDNA loci leads us to propose that rDNA evolution and complexity is influenced by locus number and/or amplification of orphaned rDNA units at new chromosomal locations.
- MeSH
- Diploidy * MeSH
- DNA, Plant genetics MeSH
- Genetic Variation genetics MeSH
- Genetic Loci genetics MeSH
- Gene Dosage genetics MeSH
- DNA, Ribosomal Spacer genetics MeSH
- DNA, Ribosomal genetics MeSH
- Genes, Plant genetics MeSH
- Sequence Analysis, DNA MeSH
- Blotting, Southern MeSH
- Nicotiana genetics MeSH
- High-Throughput Nucleotide Sequencing * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Plant MeSH
- DNA, Ribosomal Spacer MeSH
- DNA, Ribosomal MeSH
BACKGROUND: Tragopogon mirus and T. miscellus are allotetraploids (2n = 24) that formed repeatedly during the past 80 years in eastern Washington and adjacent Idaho (USA) following the introduction of the diploids T. dubius, T. porrifolius, and T. pratensis (2n = 12) from Europe. In most natural populations of T. mirus and T. miscellus, there are far fewer 35S rRNA genes (rDNA) of T. dubius than there are of the other diploid parent (T. porrifolius or T. pratensis). We studied the inheritance of parental rDNA loci in allotetraploids resynthesized from diploid accessions. We investigate the dynamics and directionality of these rDNA losses, as well as the contribution of gene copy number variation in the parental diploids to rDNA variation in the derived tetraploids. RESULTS: Using Southern blot hybridization and fluorescent in situ hybridization (FISH), we analyzed copy numbers and distribution of these highly reiterated genes in seven lines of synthetic T. mirus (110 individuals) and four lines of synthetic T. miscellus (71 individuals). Variation among diploid parents accounted for most of the observed gene imbalances detected in F1 hybrids but cannot explain frequent deviations from repeat additivity seen in the allotetraploid lines. Polyploid lineages involving the same diploid parents differed in rDNA genotype, indicating that conditions immediately following genome doubling are crucial for rDNA changes. About 19% of the resynthesized allotetraploid individuals had equal rDNA contributions from the diploid parents, 74% were skewed towards either T. porrifolius or T. pratensis-type units, and only 7% had more rDNA copies of T. dubius-origin compared to the other two parents. Similar genotype frequencies were observed among natural populations. Despite directional reduction of units, the additivity of 35S rDNA locus number is maintained in 82% of the synthetic lines and in all natural allotetraploids. CONCLUSIONS: Uniparental reductions of homeologous rRNA gene copies occurred in both synthetic and natural populations of Tragopogon allopolyploids. The extent of these rDNA changes was generally higher in natural populations than in the synthetic lines. We hypothesize that locus-specific and chromosomal changes in early generations of allopolyploids may influence patterns of rDNA evolution in later generations.
- MeSH
- Asteraceae genetics MeSH
- Diploidy MeSH
- Hybridization, Genetic genetics MeSH
- In Situ Hybridization, Fluorescence MeSH
- Evolution, Molecular * MeSH
- DNA, Ribosomal genetics MeSH
- Blotting, Southern MeSH
- Tetraploidy MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- DNA, Ribosomal MeSH
The widespread occurrence of epigenetic alterations in allopolyploid species deserves scrutiny that DNA methylation systems may be perturbed by interspecies hybridization and polyploidization. Here we studied the genes involved in DNA methylation in Nicotiana tabacum (tobacco) allotetraploid containing S and T genomes inherited from Nicotiana sylvestris and Nicotiana tomentosiformis progenitors. To determine the inheritance of DNA methyltransferase genes and their expression patterns we examined three major DNA methyltransferase families (MET1, CMT3 and DRM) from tobacco and the progenitor species. Using Southern blot hybridization and PCR-based methods (genomic CAPS), we found that the parental loci of these gene families are retained in tobacco. Homoeologous expression was found in all tissues examined (leaf, root, flower) suggesting that DNA methyltransferase genes were probably not themselves targets of uniparental epigenetic silencing for over thousands of generations of allotetraploid evolution. The level of CG and CHG methylation of selected high-copy repeated sequences was similar and high in tobacco and its diploid progenitors. We speculate that natural selection might favor additive expression of parental DNA methyltransferase genes maintaining high levels of DNA methylation in tobacco, which has a repeat-rich heterochromatic genome.
- MeSH
- Diploidy MeSH
- DNA, Plant genetics MeSH
- DNA (Cytosine-5-)-Methyltransferases classification genetics metabolism MeSH
- Epigenesis, Genetic MeSH
- Gene Expression MeSH
- Phylogeny MeSH
- Genome, Plant MeSH
- Cloning, Molecular MeSH
- DNA Methylation genetics MeSH
- Molecular Sequence Data MeSH
- Multigene Family * MeSH
- Polyploidy MeSH
- Repetitive Sequences, Nucleic Acid MeSH
- Genes, Plant * MeSH
- Base Sequence MeSH
- Selection, Genetic MeSH
- Nicotiana enzymology genetics MeSH
- Tissue Distribution MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Plant MeSH
- DNA (Cytosine-5-)-Methyltransferases MeSH
BACKGROUND: The evolution and biology of rDNA have interested biologists for many years, in part, because of two intriguing processes: (1) nucleolar dominance and (2) sequence homogenization. We review patterns of evolution in rDNA in the angiosperm genus Nicotiana to determine consequences of allopolyploidy on these processes. SCOPE: Allopolyploid species of Nicotiana are ideal for studying rDNA evolution because phylogenetic reconstruction of DNA sequences has revealed patterns of species divergence and their parents. From these studies we also know that polyploids formed over widely different timeframes (thousands to millions of years), enabling comparative and temporal studies of rDNA structure, activity and chromosomal distribution. In addition studies on synthetic polyploids enable the consequences of de novo polyploidy on rDNA activity to be determined. CONCLUSIONS: We propose that rDNA epigenetic expression patterns established even in F(1) hybrids have a material influence on the likely patterns of divergence of rDNA. It is the active rDNA units that are vulnerable to homogenization, which probably acts to reduce mutational load across the active array. Those rDNA units that are epigenetically silenced may be less vulnerable to sequence homogenization. Selection cannot act on these silenced genes, and they are likely to accumulate mutations and eventually be eliminated from the genome. It is likely that whole silenced arrays will be deleted in polyploids of 1 million years of age and older.
- MeSH
- DNA, Plant genetics MeSH
- Epigenesis, Genetic * MeSH
- Phylogeny MeSH
- Evolution, Molecular * MeSH
- Polyploidy MeSH
- DNA, Ribosomal genetics MeSH
- Nicotiana genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Plant MeSH
- DNA, Ribosomal MeSH
We analyzed nuclear ribosomal DNA (rDNA) transcription and chromatin condensation in individuals from several populations of Tragopogon mirus and T. miscellus, allotetraploids that have formed repeatedly within only the last 80 years from T. dubius and T. porrifolius and T. dubius and T. pratensis, respectively. We identified populations with no (2), partial (2), and complete (4) nucleolar dominance. It is probable that epigenetic regulation following allopolyploidization varies between populations, with a tendency toward nucleolar dominance by one parental homeologue. Dominant rDNA loci are largely decondensed at interphase while silent loci formed condensed heterochromatic regions excluded from nucleoli. Those populations where nucleolar dominance is fixed are epigenetically more stable than those with partial or incomplete dominance. Previous studies indicated that concerted evolution has partially homogenized thousands of parental rDNA units typically reducing the copy numbers of those derived from the T. dubius diploid parent. Paradoxically, despite their low copy number, repeats of T. dubius origin dominate rDNA transcription in most populations studied, i.e., rDNA units that are genetic losers (copy numbers) are epigenetic winners (high expression).
- MeSH
- Chromatin genetics MeSH
- Diploidy MeSH
- DNA Primers genetics MeSH
- DNA, Plant genetics MeSH
- Gene Expression MeSH
- Gene Dosage MeSH
- Evolution, Molecular MeSH
- Molecular Sequence Data MeSH
- Nucleolus Organizer Region genetics MeSH
- Polymorphism, Single-Stranded Conformational MeSH
- Polyploidy MeSH
- Genetics, Population MeSH
- DNA, Ribosomal genetics MeSH
- Genes, Plant MeSH
- Base Sequence MeSH
- Tragopogon genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geographicals
- Idaho MeSH
- Washington MeSH
- Names of Substances
- Chromatin MeSH
- DNA Primers MeSH
- DNA, Plant MeSH
- DNA, Ribosomal MeSH
Epigenetic changes accompanying plant cell dedifferentiation and differentiation are reported in 35S ribosomal DNA (rDNA) of tobacco (Nicotiana tabacum). There was a reduction of CG and CNG methylation in both intergenic and genic regions of the rDNA cistron in fully dedifferentiated callus and root compared to leaf. The rDNA hypomethylation was not random, but targeted to particular rDNA gene families at units that are clustered within the tandem array. The process of hypomethylation was initiated as early as 2 weeks after the callus induction and established epigenetic patterns were stably maintained throughout prolonged culture. However, regenerated plants and their progeny showed partial and complete remethylation of units, respectively. Nuclear run-on assays revealed a 2-fold increase of primary (unprocessed) ribosomal RNA transcripts in callus compared to leaf tissue. However, the abundance of mature transcripts in callus was elevated by only about 25%. Fluorescence in situ hybridization analysis of interphase nuclei showed high levels of rDNA chromatin condensation in both callus and leaf, with substantially less decondensed rDNA than is observed in meristematic root-tip cells. It is likely that the regions of the rDNA locus showing decondensation correspond to the clusters of hypomethylated units that occur in the tandem array at each locus. The data together indicate that the establishment of pluripotency and cell proliferation occurring with callus induction is associated with enhanced ribosomal RNA gene expression and overall rDNA hypomethylation, but is not associated with material-enhanced relaxation of chromatin structure (decondensation) at rDNA loci.
- MeSH
- Cell Differentiation * MeSH
- Chromatin chemistry metabolism MeSH
- Transcription, Genetic genetics MeSH
- In Situ Hybridization, Fluorescence MeSH
- Interphase MeSH
- Plant Roots genetics MeSH
- Cells, Cultured MeSH
- Plant Leaves cytology genetics MeSH
- RNA, Messenger genetics metabolism MeSH
- DNA Methylation * MeSH
- Regeneration MeSH
- Gene Expression Regulation, Plant MeSH
- RNA, Ribosomal genetics MeSH
- Nicotiana cytology genetics growth & development MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chromatin MeSH
- RNA, Messenger MeSH
- RNA, Ribosomal MeSH
We investigated concerted evolution of rRNA genes in multiple populations of Tragopogon mirus and T. miscellus, two allotetraploids that formed recurrently within the last 80 years following the introduction of three diploids (T. dubius, T. pratensis, and T. porrifolius) from Europe to North America. Using the earliest herbarium specimens of the allotetraploids (1949 and 1953) to represent the genomic condition near the time of polyploidization, we found that the parental rDNA repeats were inherited in roughly equal numbers. In contrast, in most present-day populations of both tetraploids, the rDNA of T. dubius origin is reduced and may occupy as little as 5% of total rDNA in some individuals. However, in two populations of T. mirus the repeats of T. dubius origin outnumber the repeats of the second diploid parent (T. porrifolius), indicating bidirectional concerted evolution within a single species. In plants of T. miscellus having a low rDNA contribution from T. dubius, the rDNA of T. dubius was nonetheless expressed. We have apparently caught homogenization of rDNA repeats (concerted evolution) in the act, although it has not proceeded to completion in any allopolyploid population yet examined.
- MeSH
- Chromosomes, Plant MeSH
- Diploidy MeSH
- DNA, Plant MeSH
- Genome, Plant MeSH
- Genes, rRNA MeSH
- In Situ Hybridization, Fluorescence MeSH
- Nuclear Matrix chemistry MeSH
- Evolution, Molecular * MeSH
- Molecular Sequence Data MeSH
- Polymorphism, Single-Stranded Conformational MeSH
- Polyploidy * MeSH
- Genetics, Population MeSH
- Restriction Mapping MeSH
- DNA, Ribosomal genetics MeSH
- Seeds growth & development MeSH
- Tragopogon cytology genetics growth & development MeSH
- Geography MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- DNA, Plant MeSH
- DNA, Ribosomal MeSH