Nejvíce citovaný článek - PubMed ID 21706000
BACKGROUND: During early mammalian development, DNA methylation undergoes two waves of reprogramming, enabling transitions between somatic cells, oocyte and embryo. The first wave of de novo DNA methylation establishment occurs in oocytes. Its molecular mechanisms have been studied in mouse, a classical mammalian model. Current model describes DNA methyltransferase 3A (DNMT3A) and its cofactor DNMT3L as two essential factors for oocyte DNA methylation-the ablation of either leads to nearly complete abrogation of DNA methylation. However, DNMT3L is not expressed in human oocytes, suggesting that the mechanism uncovered in mouse is not universal across mammals. RESULTS: We analysed available RNA-seq data sets from oocytes of multiple mammals, including our novel data sets of several rodent species, and revealed that Dnmt3l is expressed only in the oocytes of mouse, rat and golden hamster, and at a low level in guinea pigs. We identified a specific promoter sequence recognised by an oocyte transcription factor complex associated with strong Dnmt3l activity and demonstrated that it emerged in the rodent clade Eumuroida, comprising the families Muridae (mice, rats, gerbils) and Cricetidae (hamsters). In addition, an evolutionarily novel promoter emerged in the guinea pig, driving weak Dnmt3l expression, likely without functional relevance. Therefore, Dnmt3l is expressed and consequently plays a role in oocyte de novo DNA methylation only in a small number of rodent species, instead of being an essential pan-mammalian factor. In contrast to somatic cells, where catalytically inactive DNMT3B interacts with DNMT3A, forming a heterotetramer, we did not find evidence for the expression of such inactive Dnmt3b isoforms in the oocytes of the tested species. CONCLUSIONS: The analysis of RNA-seq data and genomic sequences revealed that DNMT3L is likely to play a role in oocytes de novo DNA methylation only in mice, rats, gerbils and hamsters. The mechanism governing de novo DNA methylation in the oocytes of most mammalian species, including humans, occurs through a yet unknown mechanism that differs from the current model discovered in mouse.
- MeSH
- Arvicolinae metabolismus MeSH
- DNA methyltransferasa 3A MeSH
- DNA-(cytosin-5-)methyltransferasa * genetika metabolismus MeSH
- Gerbillinae metabolismus MeSH
- křečci praví MeSH
- krysa rodu Rattus MeSH
- metylace DNA * MeSH
- morčata MeSH
- Muridae * metabolismus MeSH
- myši MeSH
- oocyty MeSH
- transkripční faktory metabolismus MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- krysa rodu Rattus MeSH
- morčata MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA methyltransferasa 3A MeSH
- DNA-(cytosin-5-)methyltransferasa * MeSH
- DNMT3L protein, human MeSH Prohlížeč
- transkripční faktory MeSH
BACKGROUND: Reproductive biology methods rely on in vitro follicle cultures from mature follicles obtained by hormonal stimulation for generating metaphase II oocytes to be fertilised and developed into a healthy embryo. Such techniques are used routinely in both rodent and human species. DNA methylation is a dynamic process that plays a role in epigenetic regulation of gametogenesis and development. In mammalian oocytes, DNA methylation establishment regulates gene expression in the embryos. This regulation is particularly important for a class of genes, imprinted genes, whose expression patterns are crucial for the next generation. The aim of this work was to establish an in vitro culture system for immature mouse oocytes that will allow manipulation of specific factors for a deeper analysis of regulatory mechanisms for establishing transcription regulation-associated methylation patterns. RESULTS: An in vitro culture system was developed from immature mouse oocytes that were grown to germinal vesicles (GV) under two different conditions: normoxia (20% oxygen, 20% O2) and hypoxia (5% oxygen, 5% O2). The cultured oocytes were sorted based on their sizes. Reduced representative bisulphite sequencing (RRBS) and RNA-seq libraries were generated from cultured and compared to in vivo-grown oocytes. In the in vitro cultured oocytes, global and CpG-island (CGI) methylation increased gradually along with oocyte growth, and methylation of the imprinted genes was similar to in vivo-grown oocytes. Transcriptomes of the oocytes grown in normoxia revealed chromatin reorganisation and enriched expression of female reproductive genes, whereas in the 5% O2 condition, transcripts were biased towards cellular stress responses. To further confirm the results, we developed a functional assay based on our model for characterising oocyte methylation using drugs that reduce methylation and transcription. When histone methylation and transcription processes were reduced, DNA methylation at CGIs from gene bodies of grown oocytes presented a lower methylation profile. CONCLUSIONS: Our observations reveal changes in DNA methylation and transcripts between oocytes cultured in vitro with different oxygen concentrations and in vivo-grown murine oocytes. Oocytes grown under 20% O2 had a higher correlation with in vivo oocytes for DNA methylation and transcription demonstrating that higher oxygen concentration is beneficial for the oocyte maturation in ex vivo culture condition. Our results shed light on epigenetic mechanisms for the development of oocytes from an immature to GV oocyte in an in vitro culture model.
- Klíčová slova
- 5% oxygen, DNA methylation, In vitro culture, Mouse, Normoxia, Oocyte, Transcription,
- MeSH
- IVM techniky metody MeSH
- kyslík metabolismus MeSH
- metylace DNA * MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- oocyty růst a vývoj MeSH
- transkriptom * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyslík MeSH
Two leading European professional societies, the European Society of Human Genetics and the European Society for Human Reproduction and Embryology, have worked together since 2004 to evaluate the impact of fast research advances at the interface of assisted reproduction and genetics, including their application into clinical practice. In September 2016, the expert panel met for the third time. The topics discussed highlighted important issues covering the impacts of expanded carrier screening, direct-to-consumer genetic testing, voiding of the presumed anonymity of gamete donors by advanced genetic testing, advances in the research of genetic causes underlying male and female infertility, utilisation of massively parallel sequencing in preimplantation genetic testing and non-invasive prenatal screening, mitochondrial replacement in human oocytes, and additionally, issues related to cross-generational epigenetic inheritance following IVF and germline genome editing. The resulting paper represents a consensus of both professional societies involved.
- Klíčová slova
- Assisted reproductive technology, Epigenetics, Expanded carrier screening, Female infertility, Gamete donor anonymity, Germline genome editing, Male infertility, Mitochondrial replacement therapy, Non-invasive prenatal testing, Preimplantation genetic testing,
- MeSH
- asistovaná reprodukce * MeSH
- genetické testování metody MeSH
- kongresy jako téma MeSH
- lékařská genetika metody MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Two leading European professional societies, the European Society of Human Genetics and the European Society for Human Reproduction and Embryology, have worked together since 2004 to evaluate the impact of fast research advances at the interface of assisted reproduction and genetics, including their application into clinical practice. In September 2016, the expert panel met for the third time. The topics discussed highlighted important issues covering the impacts of expanded carrier screening, direct-to-consumer genetic testing, voiding of the presumed anonymity of gamete donors by advanced genetic testing, advances in the research of genetic causes underlying male and female infertility, utilisation of massively-parallel sequencing in preimplantation genetic testing and non-invasive prenatal screening, mitochondrial replacement in human oocytes, and additionally, issues related to cross-generational epigenetic inheritance following IVF and germline genome editing. The resulting paper represents a consensus of both professional societies involved.
- Klíčová slova
- assisted reproductive technology, epigenetics, expanded carrier screening, female infertility, gamete donor anonymity, germline genome editing, male infertility, mitochondrial replacement therapy, non-invasive prenatal testing, preimplantation genetic testing,
- Publikační typ
- časopisecké články MeSH
Retrotransposons are "copy-and-paste" insertional mutagens that substantially contribute to mammalian genome content. Retrotransposons often carry long terminal repeats (LTRs) for retrovirus-like reverse transcription and integration into the genome. We report an extraordinary impact of a group of LTRs from the mammalian endogenous retrovirus-related ERVL retrotransposon class on gene expression in the germline and beyond. In mouse, we identified more than 800 LTRs from ORR1, MT, MT2, and MLT families, which resemble mobile gene-remodeling platforms that supply promoters and first exons. The LTR-mediated gene remodeling also extends to hamster, human, and bovine oocytes. The LTRs function in a stage-specific manner during the oocyte-to-embryo transition by activating transcription, altering protein-coding sequences, producing noncoding RNAs, and even supporting evolution of new protein-coding genes. These functions result, for example, in recycling processed pseudogenes into mRNAs or lncRNAs with regulatory roles. The functional potential of the studied LTRs is even higher, because we show that dormant LTR promoter activity can rescue loss of an essential upstream promoter. We also report a novel protein-coding gene evolution-D6Ertd527e-in which an MT LTR provided a promoter and the 5' exon with a functional start codon while the bulk of the protein-coding sequence evolved through a CAG repeat expansion. Altogether, ERVL LTRs provide molecular mechanisms for stochastically scanning, rewiring, and recycling genetic information on an extraordinary scale. ERVL LTRs thus offer means for a comprehensive survey of the genome's expression potential, tightly intertwining with gene expression and evolution in the germline.
- MeSH
- endogenní retroviry MeSH
- genetická transkripce MeSH
- koncové repetice * MeSH
- křečci praví MeSH
- lidé MeSH
- molekulární evoluce * MeSH
- myši MeSH
- oocyty cytologie metabolismus MeSH
- promotorové oblasti (genetika) MeSH
- regulace genové exprese * MeSH
- retroelementy * MeSH
- skot MeSH
- zvířata MeSH
- zygota cytologie metabolismus MeSH
- Check Tag
- křečci praví MeSH
- lidé MeSH
- myši MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- retroelementy * MeSH
BACKGROUND: Gametogenesis in mammals entails profound re-patterning of the epigenome. In the female germline, DNA methylation is acquired late in oogenesis from an essentially unmethylated baseline and is established largely as a consequence of transcription events. Molecular and functional studies have shown that imprinted genes become methylated at different times during oocyte growth; however, little is known about the kinetics of methylation gain genome wide and the reasons for asynchrony in methylation at imprinted loci. RESULTS: Given the predominant role of transcription, we sought to investigate whether transcription timing is rate limiting for de novo methylation and determines the asynchrony of methylation events. Therefore, we generated genome-wide methylation and transcriptome maps of size-selected, growing oocytes to capture the onset and progression of methylation. We find that most sequence elements, including most classes of transposable elements, acquire methylation at similar rates overall. However, methylation of CpG islands (CGIs) is delayed compared with the genome average and there are reproducible differences amongst CGIs in onset of methylation. Although more highly transcribed genes acquire methylation earlier, the major transitions in the oocyte transcriptome occur well before the de novo methylation phase, indicating that transcription is generally not rate limiting in conferring permissiveness to DNA methylation. Instead, CGI methylation timing negatively correlates with enrichment for histone 3 lysine 4 (H3K4) methylation and dependence on the H3K4 demethylases KDM1A and KDM1B, implicating chromatin remodelling as a major determinant of methylation timing. We also identified differential enrichment of transcription factor binding motifs in CGIs acquiring methylation early or late in oocyte growth. By combining these parameters into multiple regression models, we were able to account for about a fifth of the variation in methylation timing of CGIs. Finally, we show that establishment of non-CpG methylation, which is prevalent in fully grown oocytes, and methylation over non-transcribed regions, are later events in oogenesis. CONCLUSIONS: These results do not support a major role for transcriptional transitions in the time of onset of DNA methylation in the oocyte, but suggest a model in which sequences least dependent on chromatin remodelling are the earliest to become permissive for methylation.
- Klíčová slova
- DNA methylation, Histone modifications, Imprinting, Oocytes, Transcription,
- MeSH
- chromatin genetika MeSH
- CpG ostrůvky genetika MeSH
- DNA-(cytosin-5-)methyltransferasa genetika MeSH
- genetická transkripce * MeSH
- genomový imprinting genetika MeSH
- histony genetika MeSH
- metylace DNA genetika MeSH
- myši MeSH
- oocyty růst a vývoj metabolismus MeSH
- oogeneze genetika MeSH
- restrukturace chromatinu MeSH
- transkriptom genetika MeSH
- zárodečné buňky MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- DNA-(cytosin-5-)methyltransferasa MeSH
- histony MeSH
The oocyte-to-embryo transition (OET) transforms a differentiated gamete into pluripotent blastomeres. The accompanying maternal-zygotic RNA exchange involves remodeling of the long non-coding RNA (lncRNA) pool. Here, we used next generation sequencing and de novo transcript assembly to define the core population of 1,600 lncRNAs expressed during the OET (lncRNAs). Relative to mRNAs, OET lncRNAs were less expressed and had shorter transcripts, mainly due to fewer exons and shorter 5' terminal exons. Approximately half of OET lncRNA promoters originated in retrotransposons suggesting their recent emergence. Except for a small group of ubiquitous lncRNAs, maternal and zygotic lncRNAs formed two distinct populations. The bulk of maternal lncRNAs was degraded before the zygotic genome activation. Interestingly, maternal lncRNAs seemed to undergo cytoplasmic polyadenylation observed for dormant mRNAs. We also identified lncRNAs giving rise to trans-acting short interfering RNAs, which represent a novel lncRNA category. Altogether, we defined the core OET lncRNA transcriptome and characterized its remodeling during early development. Our results are consistent with the notion that rapidly evolving lncRNAs constitute signatures of cells-of-origin while a minority plays an active role in control of gene expression across OET. Our data presented here provide an excellent source for further OET lncRNA studies.
- Klíčová slova
- endo-siRNA, lncRNA, oocyte, polyadenylation, zygote,
- MeSH
- blastomery metabolismus MeSH
- embryo savčí metabolismus MeSH
- myši MeSH
- oocyty metabolismus MeSH
- RNA dlouhá nekódující genetika metabolismus MeSH
- sekvenční analýza RNA MeSH
- stanovení celkové genové exprese MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- vývojová regulace genové exprese * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA dlouhá nekódující MeSH
Epigenetic modifications established during gametogenesis regulate transcription and other nuclear processes in gametes, but also have influences in the zygote, embryo and postnatal life. This is best understood for DNA methylation which, established at discrete regions of the oocyte and sperm genomes, governs genomic imprinting. In this review, we describe how imprinting has informed our understanding of de novo DNA methylation mechanisms, highlight how recent genome-wide profiling studies have provided unprecedented insights into establishment of the sperm and oocyte methylomes and consider the fate and function of gametic methylation and other epigenetic modifications after fertilization.
- Klíčová slova
- DNA methylation, embryo, imprinting, oogenesis, spermatogenesis, transgenerational inheritance,
- MeSH
- genomový imprinting * MeSH
- histonový kód MeSH
- lidé MeSH
- metylace DNA * MeSH
- zárodečné buňky metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
At the end of the growth phase, mouse antral follicle oocytes acquire full developmental competence. In the mouse, this event is marked by the transition from the so-called non-surrounded nucleolus (NSN) chromatin configuration into the transcriptionally quiescent surrounded nucleolus (SN) configuration, which is named after a prominent perinucleolar condensed chromatin ring. However, the SN chromatin configuration alone is not sufficient for determining the developmental competence of the SN oocyte. There are additional nuclear and cytoplamic factors involved, while a little is known about the changes occurring in the cytoplasm during the NSN/SN transition. Here, we report functional analysis of maternal ELAVL2 an AU-rich element binding protein. Elavl2 gene encodes an oocyte-specific protein isoform (denoted ELAVL2°), which acts as a translational repressor. ELAVL2° is abundant in fully grown NSN oocytes, is ablated during the NSN/SN transition and remains low during the oocyte-to-embryo transition (OET). ELAVL2° overexpression during meiotic maturation causes errors in chromosome segregation, indicating the significance of naturally reduced ELAVL2° levels in SN oocytes. On the other hand, during oocyte growth, prematurely reduced Elavl2 expression results in lower yields of fully grown and meiotically matured oocytes, suggesting that Elavl2 is necessary for proper oocyte maturation. Moreover, Elavl2 knockdown showed stimulating effects on translation in fully grown oocytes. We propose that ELAVL2 has an ambivalent role in oocytes: it functions as a pleiotropic translational repressor in efficient production of fully grown oocytes, while its disposal during the NSN/SN transition contributes to the acquisition of full developmental competence.
- Klíčová slova
- ARE, ELAVL2, NSN, SN, chromatin, oocyte,
- MeSH
- buněčné linie MeSH
- ELAV-like protein 2 genetika metabolismus MeSH
- genový knockdown MeSH
- lidé MeSH
- meióza fyziologie MeSH
- myši inbrední BALB C MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- oocyty cytologie metabolismus MeSH
- ovariální folikul cytologie metabolismus MeSH
- protein - isoformy genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ELAV-like protein 2 MeSH
- Elavl2 protein, mouse MeSH Prohlížeč
- protein - isoformy MeSH