Nejvíce citovaný článek - PubMed ID 22022626
Canine antibody response to Phlebotomus perniciosus bites negatively correlates with the risk of Leishmania infantum transmission
Antibodies against Phlebotomus perniciosus sandfly salivary gland homogenate (SGH) and recombinant protein rSP03B, sandfly-borne Toscana virus (TOSV), Sandfly Fever Sicilian virus (SFSV) and Leishmania, as well as DNA of the latter parasite, were investigated in 670 blood samples from 575 human donors in Murcia Region, southeast Spain, in 2017 and 2018. The estimated SGH and rSP03B seroprevalences were 69% and 88%, respectively, although correlation between test results was relatively low (ρ = 0.39). Similarly, TOSV, SFSV and Leishmania seroprevalences were 26%, 0% and 1%, respectively, and Leishmania PCR prevalence was 2%. Prevalences were significantly greater in 2017, overdispersed and not spatially related to each other although both were positively associated with SGH but not to rSP03B antibody optical densities, questioning the value of the latter as a diagnostic marker for these infections in humans.
- Klíčová slova
- Leishmania infantum, anti-saliva antibodies, blood donors, sandflies, sandfly fever sicilian virus, toscana virus,
- MeSH
- dárci krve MeSH
- Leishmania infantum * MeSH
- leishmanióza * parazitologie veterinární MeSH
- lidé MeSH
- Phlebotomus * parazitologie MeSH
- protilátky MeSH
- Psychodidae * MeSH
- rekombinantní proteiny MeSH
- virus horečky pappataci * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Španělsko epidemiologie MeSH
- Názvy látek
- protilátky MeSH
- rekombinantní proteiny MeSH
Phlebotomus perniciosus (Diptera: Phlebotominae) is a medically and veterinary important insect vector. It transmits the unicellular parasite Leishmania infantum that multiplies intracellularly in macrophages causing life-threatening visceral diseases. Leishmania establishment in the vertebrate host is substantially influenced by immunomodulatory properties of vector saliva that are obligatorily co-injected into the feeding site. The repertoire of P. perniciosus salivary molecules has already been revealed and, subsequently, several salivary proteins have been expressed. However, their immunogenic properties have never been studied. In our study, we tested three P. perniciosus recombinant salivary proteins-an apyrase rSP01 and yellow-related proteins rSP03 and rSP03B-and showed their anti-inflammatory nature on the murine bone-marrow derived macrophages. Even in the presence of pro-inflammatory stimuli (IFN-γ and bacterial lipopolysaccharide, LPS), all three recombinant proteins inhibited nitric oxide production. Moreover, rSP03 seems to have a very strong anti-inflammatory effect since it enhanced arginase activity, increased the production of IL-10, and inhibited the production of TNF-α even in macrophages stimulated with IFN-γ and LPS. These results suggest that P. perniciosus apyrase and yellow-related proteins may serve as enhancing factors in sand fly saliva, facilitating the development of Leishmania infection along with their anti-haemostatic properties. Additionally, rSP03 and rSP03B did not elicit the delayed-type hypersensitivity response in mice pre-exposed to P. perniciosus bites (measured as visible skin reaction). The results of our study may help to understand the potential function of recombinant's native counterparts and their role in Leishmania transmission and establishment within the host.
- Klíčová slova
- Phlebotomus, apyrase, immunogenicity, macrophage polarization, sand fly saliva, yellow-related proteins,
- MeSH
- antiflogistika MeSH
- fenotyp MeSH
- makrofágy MeSH
- myši MeSH
- Phlebotomus * MeSH
- psi MeSH
- rekombinantní proteiny MeSH
- slinné proteiny a peptidy MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiflogistika MeSH
- rekombinantní proteiny MeSH
- slinné proteiny a peptidy MeSH
BACKGROUND: During blood feeding, sand flies inoculate salivary proteins that interact with the host haemostatic system. The blocking of biogenic amines such as serotonin and histamine helps to limit vasodilatation and clot formation, and thus enables the insect to finish the blood-feeding process. In sand flies, an amine-binding ability is known only for the yellow-related proteins of Phlebotomus and Lutzomyia vectors, but not yet for members of the genus Sergentomyia. METHODS: The ability of Phlebotomus argentipes and Sergentomyia schwetzi recombinant yellow-related salivary proteins to bind histamine and serotonin was measured by microscale thermophoresis. Both sand fly species were also fed through a chicken-skin membrane on blood mixed with histamine or serotonin in order to check the effects of biogenic amines on sand fly fitness. Additionally, fecundity and mortality were compared in two groups of P. argentipes females fed on repeatedly-bitten and naive hamsters, respectively. RESULTS: The P. argentipes recombinant yellow-related protein PagSP04 showed high binding affinity to serotonin and low affinity to histamine. No binding activity was detected for two yellow-related proteins of S. schwetzi. Elevated concentrations of serotonin significantly reduced the amount of eggs laid by P. argentipes when compared to the control. The fecundity of S. schwetzi and the mortality of both sand fly species were not impaired after the experimental membrane feeding. Additionally, there were no differences in oviposition or mortality between P. argentipes females fed on immunized or naive hamsters. CONCLUSIONS: Our results suggest that in natural conditions sand flies are able to cope with biogenic amines or anti-saliva antibodies without any influence on their fitness. The serotonin binding by salivary yellow-related proteins may play an important role in Phlebotomus species feeding on mammalian hosts, but not in S. schwetzi, which is adapted to reptiles.
- Klíčová slova
- Anti-saliva antibodies, Histamine, Mortality, Oviposition, Phlebotomus argentipes, Sergentomyia schwetzi, Serotonin, Yellow-related proteins,
- MeSH
- biogenní aminy * krev farmakologie MeSH
- fertilita účinky léků MeSH
- histamin krev MeSH
- hmyzí proteiny chemie metabolismus MeSH
- kousnutí a bodnutí hmyzem imunologie MeSH
- křečci praví MeSH
- krev metabolismus MeSH
- molekulární evoluce MeSH
- mortalita MeSH
- Phlebotomus metabolismus MeSH
- plazi MeSH
- protilátky MeSH
- Psychodidae metabolismus MeSH
- rekombinantní proteiny chemie metabolismus MeSH
- savci MeSH
- serotonin krev MeSH
- slinné proteiny a peptidy * chemie metabolismus MeSH
- sliny imunologie MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biogenní aminy * MeSH
- histamin MeSH
- hmyzí proteiny MeSH
- protilátky MeSH
- rekombinantní proteiny MeSH
- serotonin MeSH
- slinné proteiny a peptidy * MeSH
BACKGROUND: In endemic areas of zoonotic leishmaniosis caused by L. infantum, early detection of Leishmania infection in dogs is essential to control the dissemination of the parasite to humans. The aim of this study was to evaluate the serological and/or molecular diagnostic performance of minimally and non-invasive samples (conjunctiva cells (CS) and peripheral blood (PB)) for monitoring Leishmania infection/exposure to Phlebotomus perniciosus salivary antigens in dogs at the beginning and the end of sand fly seasonal activity (May and October, respectively) and to assess associated risks factors. METHODS: A total of 208 sheltered dogs from endemic areas of leishmaniosis were screened. Leishmania DNA detection in PB on filter paper and CS was performed by nested-PCR (nPCR), while the detection of anti-Leishmania antibodies was performed using IFAT and ELISA. The exposure to P. perniciosus salivary antigens (SGH, rSP01 and rSP03B + rSP01) was measured by ELISA. RESULTS: Ninety-seven (46.6%) and 116 (55.8%) of the 208 dogs were positive to Leishmania antibodies or DNA by at least one test at the beginning and end of the sand fly season, respectively. IFAT and ELISA presented a substantial agreement in the serodiagnosis of leishmaniosis. Discrepant PB nPCR results were obtained between sampling points. Leishmania DNA was detected in CS of 72 dogs at the end of the phlebotomine season. The presence of antibodies to the parasite measured by ELISA was significantly higher in dogs presenting clinical signs compatible with leishmaniosis at both sampling points. Phlebotomus perniciosus salivary antibodies were detected in 179 (86.1%) and 198 (95.2%) of the screened dogs at the beginning and end of the phlebotomine season, respectively. CONCLUSIONS: The association between ELISA positivity and clinical signs suggests its usefulness to confirm a clinical suspicion. CS nPCR seems to be an effective and non-invasive method for assessing early exposure to the parasite. PB nPCR should not be used as the sole diagnostic tool to monitor Leishmania infection. The correlation between the levels of antibodies to P. perniciosus saliva and Leishmania antibodies suggests the use of a humoral response to sand fly salivary antigens as biomarkers of L. infantum infection.
- Klíčová slova
- Blood, Conjunctival cells, Dog, Exposure, L. infantum, Phlebotomus pernicious, Saliva,
- MeSH
- antigeny protozoální imunologie MeSH
- endemické nemoci prevence a kontrola MeSH
- hmyz - vektory parazitologie MeSH
- hmyzí proteiny imunologie MeSH
- imunoglobulin G krev MeSH
- konjunktiva cytologie parazitologie MeSH
- kousnutí a bodnutí hmyzem MeSH
- Leishmania infantum izolace a purifikace MeSH
- leishmanióza krev imunologie veterinární MeSH
- nemoci psů parazitologie prevence a kontrola přenos MeSH
- Phlebotomus parazitologie MeSH
- protilátky protozoální krev MeSH
- protozoální proteiny imunologie MeSH
- psi MeSH
- rizikové faktory MeSH
- sérologické testy MeSH
- slinné proteiny a peptidy imunologie MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny protozoální MeSH
- hmyzí proteiny MeSH
- imunoglobulin G MeSH
- protilátky protozoální MeSH
- protozoální proteiny MeSH
- slinné proteiny a peptidy MeSH
BACKGROUND: Canine leishmaniosis caused by Leishmania infantum is a neglected zoonosis transmitted by sand flies like Phlebotomus perniciosus. Clinical signs and disease susceptibility vary according to various factors, including host immune response and breed. In particular, Ibizan hounds appear more resistant. This immunocompetence could be attributed to a more frequent exposure to uninfected sand flies, eliciting a stronger anti-sand fly saliva antibody response. METHODS: This study aimed to investigate the prevalence of anti-P. perniciosus saliva antibodies in Ibizan hounds and dogs of other breeds in the Leishmania-endemic area of Mallorca, Spain, and to correlate these antibody levels with clinical, immunological and parasitological parameters. Anti-sand fly saliva IgG was examined in 47 Ibizan hounds and 45 dogs of other breeds using three methods: P. perniciosus whole salivary gland homogenate (SGH) ELISA; recombinant protein rSP03B ELISA; and rSP03B rapid tests (RT). Additionally, diagnostic performance was evaluated between methods. RESULTS: Results indicate significantly higher anti-SGH antibodies (P = 0.0061) and a trend for more positive SGH ELISA and RT results in Ibizan hounds compared to other breeds. General linear model analysis also found breed to be a significant factor in SGH ELISA units and a marginally significant factor in RT result. Although infection rates were similar between groups, Ibizan hounds included significantly more IFN-γ producers (P = 0.0122) and papular dermatitis cases (P < 0.0001). Older age and L. infantum seropositivity were also considered significant factors in sand fly saliva antibody levels according to at least one test. Fair agreement was found between all three tests, with the highest value between SGH and rSP03B RT. CONCLUSIONS: To our knowledge, this is the first study elaborating the relationship between anti-P. perniciosus saliva antibodies and extensive clinical data in dogs in an endemic area. Our results suggest that Ibizan hounds experience a higher frequency of exposure to sand flies and have a stronger cellular immune response to L. infantum infection than other breed dogs. Additional sampling is needed to confirm results, but anti-P. perniciosus saliva antibodies appear to negatively correlate with susceptibility to L. infantum infection and could possibly contribute to the resistance observed in Ibizan hounds.
- Klíčová slova
- Anti-sand fly saliva antibodies, Canine leishmaniosis, Ibizan hounds, Leishmania infantum, Papular dermatitis, Phlebotomus perniciosus, rSP03B,
- MeSH
- chov MeSH
- endemické nemoci MeSH
- hmyzí proteiny imunologie MeSH
- imunoglobulin G imunologie MeSH
- leishmanióza imunologie veterinární MeSH
- náchylnost k nemoci MeSH
- nemoci psů imunologie parazitologie MeSH
- Phlebotomus imunologie MeSH
- psi MeSH
- slinné proteiny a peptidy imunologie MeSH
- sliny imunologie MeSH
- zoonózy parazitologie přenos MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Španělsko MeSH
- Názvy látek
- hmyzí proteiny MeSH
- imunoglobulin G MeSH
- slinné proteiny a peptidy MeSH
BACKGROUND: Canine leishmaniasis (CanL) is a severe chronic disease caused by Leishmania infantum and transmitted by sand flies of which the main vector in the Western part of the Mediterranean basin is Phlebotomus perniciosus. Previously, an immunochromatographic test (ICT) was proposed to allow rapid evaluation of dog exposure to P. perniciosus. In the present study, we optimized the prototype and evaluated the detection accuracy of the ICT in field conditions. Possible cross-reactions with other hematophagous arthropods were also assessed. METHODOLOGY/PRINCIPAL FINDINGS: The ICT was optimized by expressing the rSP03B protein in a HEK293 cell line, which delivered an increased specificity (94.92%). The ICT showed an excellent reproducibility and inter-person reliability, and was optimized for use with whole canine blood which rendered an excellent degree of agreement with the use of serum. Field detectability of the ICT was assessed by screening 186 dogs from different CanL endemic areas with both the SGH-ELISA and the ICT, and 154 longitudinally sampled dogs only with the ICT. The ICT results corresponded to the SGH-ELISA for most areas, depending on the statistical measure used. Furthermore, the ICT was able to show a clear seasonal fluctuation in the proportion of bitten dogs. Finally, we excluded cross-reactions between non-vector species and confirmed favorable cross-reactions with other L. infantum vectors belonging to the subgenus Larroussius. CONCLUSIONS/SIGNIFICANCE: We have successfully optimized the ICT, now also suitable to be used with whole canine blood. The test is able to reflect the seasonal fluctuation in dog exposure and showed a good detectability in a field population of naturally exposed dogs, particularly in areas with a high seroprevalence of bitten dogs. Furthermore, our study showed the existence of favorable cross-reactions with other sand fly vectors thereby expanding its use in the field.
- MeSH
- hmyz - vektory parazitologie fyziologie MeSH
- imunoanalýza metody MeSH
- Leishmania infantum fyziologie MeSH
- leishmanióza krev diagnóza parazitologie veterinární MeSH
- myši inbrední BALB C MeSH
- nemoci psů krev diagnóza parazitologie MeSH
- Phlebotomus parazitologie fyziologie MeSH
- psi MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
BACKGROUND: Zoonotic leishmaniosis, caused by the protozoan Leishmania infantum, is a public and animal health problem in Asia, Central and South America, the Middle East and the Mediterranean Basin. Several phlebotomine sand fly species from the subgenus Larroussius are vectors of L. infantum. Data from dogs living in endemic areas of leishmaniosis advocate the use of antibody response to phlebotomine sand fly saliva as an epidemiological biomarker for monitoring vector exposure. The aim of this study was to analyse the exposure of cats to phlebotomine sand flies using detection of IgG antibodies to Phlebotomus perniciosus saliva. The association between phlebotomine sand fly exposure and the presence of Leishmania infection was also investigated. RESULTS: IgG antibodies to P. perniciosus saliva were detected in 167 (47.7%) out of 350 cats; higher antibody levels were present in sera collected during the period of phlebotomine sand fly seasonal activity (OR = 19.44, 95% CI: 9.84-38.41). Cats of 12-35 months had higher antibody levels than younger ones (OR = 3.56, 95% CI: 1.39-9.16); this difference was also significant with older cats (for 36-95 months-old, OR = 9.43, 95% CI: 3.62-24.48; for older than 95 months, OR = 9.68, 95% CI: 3.92-23.91). Leishmania spp. DNA was detected in the blood of 24 (6.9%) cats, while antibodies to L. infantum were detected in three (0.9%). Only one cat was positive to Leishmania by both techniques. Cats presenting IgG antibodies to P. perniciosus had a significantly higher risk of being positive for Leishmania infection. CONCLUSIONS: To our knowledge, this is the first study demonstrating anti-sand fly saliva antibodies in cats. The evaluation of the contact of this animal species with the vector is important to the development of prophylactic measures directed to cats, with the aim of reducing the prevalence of infection in an endemic area. Therefore, studies evaluating whether the use of imidacloprid/flumethrin collars reduces the frequency of P. perniciosus bites in cats are needed. It is also important to evaluate if there is a correlation between the number of phlebotomine sand fly bites and IgG antibody levels.
- Klíčová slova
- Antibodies, Cat, Leishmania infantum, Phlebotomus perniciosus, Portugal, Saliva,
- MeSH
- imunoglobulin G imunologie MeSH
- kočky MeSH
- Leishmania infantum imunologie MeSH
- leishmanióza viscerální veterinární MeSH
- nemoci koček imunologie parazitologie MeSH
- Phlebotomus imunologie MeSH
- rizikové faktory MeSH
- sliny imunologie MeSH
- tvorba protilátek MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- imunoglobulin G MeSH
BACKGROUND: Phlebotomus orientalis is a vector of Leishmania donovani, the causative agent of life threatening visceral leishmaniasis spread in Eastern Africa. During blood-feeding, sand fly females salivate into the skin of the host. Sand fly saliva contains a large variety of proteins, some of which elicit specific antibody responses in the bitten hosts. To evaluate the exposure to sand fly bites in human populations from disease endemic areas, we tested the antibody reactions of volunteers' sera against recombinant P. orientalis salivary antigens. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant proteins derived from sequence data on P. orientalis secreted salivary proteins, were produced using either bacterial (five proteins) or mammalian (four proteins) expression systems and tested as antigens applicable for detection of anti-P. orientalis IgG in human sera. Using these recombinant proteins, human sera from Sudan and Ethiopia, countries endemic for visceral leishmaniasis, were screened by ELISA and immunoblotting to identify the potential markers of exposure to P. orientalis bites. Two recombinant proteins; mAG5 and mYEL1, were identified as the most promising antigens showing high correlation coefficients as well as good specificity in comparison to the whole sand fly salivary gland homogenate. Combination of both proteins led to a further increase of correlation coefficients as well as both positive and negative predictive values of P. orientalis exposure. CONCLUSIONS/SIGNIFICANCE: This is the first report of screening human sera for anti-P. orientalis antibodies using recombinant salivary proteins. The recombinant salivary proteins mYEL1 and mAG5 proved to be valid antigens for screening human sera from both Sudan and Ethiopia for exposure to P. orientalis bites. The utilization of equal amounts of these two proteins significantly increased the capability to detect anti-P. orientalis antibody responses.
- MeSH
- ELISA MeSH
- hmyzí proteiny genetika imunologie MeSH
- imunoglobulin G imunologie MeSH
- kousnutí a bodnutí hmyzem imunologie parazitologie MeSH
- lidé MeSH
- Phlebotomus genetika imunologie fyziologie MeSH
- rekombinantní proteiny genetika imunologie MeSH
- slinné proteiny a peptidy genetika imunologie MeSH
- sliny imunologie MeSH
- tvorba protilátek MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- východní Afrika MeSH
- Názvy látek
- hmyzí proteiny MeSH
- imunoglobulin G MeSH
- rekombinantní proteiny MeSH
- slinné proteiny a peptidy MeSH
BACKGROUND: Canine leishmaniosis (CanL) is an important zoonotic parasitic disease, endemic in the Mediterranean basin. In this region, transmission of Leishmania infantum, the etiological agent of CanL, is through the bite of phlebotomine sand flies. Therefore, monitoring host-vector contact represents an important epidemiological tool, and could be used to assess the effectiveness of vector-control programmes in endemic areas. Previous studies have shown that canine antibodies against the saliva of phlebotomine sand flies are specific markers of exposure to Leishmania vectors. However, this method needs to be further validated in natural heterogeneous dog populations living in CanL endemic areas. METHODS: In this study, 176 dogs living in 12 different locations of an L. infantum endemic area in north-east Spain were followed for 14 months. Blood samples were taken at 5 pre-determined time points (February, August and October 2016; January and April 2017) to assess the canine humoral immune response to whole salivary gland homogenate (SGH) and to the single salivary 43 kDa yellow-related recombinant protein (rSP03B) of Phlebotomus perniciosus, a proven vector of L. infantum naturally present in this region. Simultaneously, in all dogs, L. infantum infection status was assessed by serology. The relationship between anti-SGH and anti-rSP03B antibodies with the sampling month, L. infantum infection and the location was tested by fitting multilevel linear regression models. RESULTS: The dynamics of canine anti-saliva IgG for both SGH and rSP03B followed the expected trends of P. perniciosus activity in the region. Statistically significant associations were detected for both salivary antigens between vector exposure and sampling month or dog seropositivity to L. infantum. The correlation between canine antibodies against SGH and rSP03B was moderate. CONCLUSIONS: Our results confirm the frequent presence of CanL vectors in the study area in Spain and support the applicability of SGH- and rSP03B-based ELISA tests to study canine exposure to P. perniciosus in L. infantum endemic areas.
- Klíčová slova
- Canine leishmaniosis, Longitudinal study, Markers of exposure, North-east Spain, Phlebotomus perniciosus, Saliva proteins,
- MeSH
- endemické nemoci veterinární MeSH
- hmyz - vektory parazitologie MeSH
- humorální imunita MeSH
- imunoglobulin G analýza MeSH
- Leishmania infantum izolace a purifikace MeSH
- leishmanióza krev parazitologie veterinární MeSH
- longitudinální studie MeSH
- nemoci psů diagnóza imunologie parazitologie MeSH
- Phlebotomus imunologie MeSH
- protilátky protozoální krev MeSH
- protilátky krev MeSH
- psi imunologie parazitologie MeSH
- roční období MeSH
- slinné proteiny a peptidy imunologie MeSH
- slinné žlázy chemie parazitologie MeSH
- sliny imunologie mikrobiologie parazitologie MeSH
- zvířata MeSH
- Check Tag
- psi imunologie parazitologie MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Španělsko epidemiologie MeSH
- Názvy látek
- imunoglobulin G MeSH
- protilátky protozoální MeSH
- protilátky MeSH
- slinné proteiny a peptidy MeSH
BACKGROUND: Canine leishmaniasis (CanL) is a zoonotic disease, caused by Leishmania infantum and transmitted by Phlebotomus perniciosus in the Mediterranean basin. Previously, an ELISA based on the P. perniciosus salivary protein SP03B was proposed as a valid tool to screen for canine exposure to sand fly bites across regions endemic for CanL. Although this approach is useful in laboratory settings, a practical tool for immediate application in the field is needed. In this study we propose the rSP03B sero-strip, the first immunochromatographic test (ICT) in the field of vector exposure able to rapidly screen dogs living in endemic areas for the presence of P. perniciosus and to aid in the evaluation of vector control programs. METHODOLOGY/PRINCIPAL FINDINGS: The ICT was prepared using the bacterially expressed recombinant protein rSP03B as antigen. For test optimization, pre-immune sera from non-bitten laboratory-bred Beagles were used as negative controls. In order to validate the test, sera from laboratory-bred Beagles experimentally exposed to P. perniciosus bites were used as positive controls. Additionally, all samples were tested by ELISA using whole salivary gland homogenate (SGH) and the rSP03B protein as antigen. An almost perfect degree of agreement was found between the ICT and the SGH-ELISA. Furthermore, the newly proposed rSP03B sero-strip showed a sensitivity of 100% and a specificity of 86.79%. CONCLUSIONS/SIGNIFICANCE: We developed a simple and rapid ICT based on the P. perniciosus rSP03B salivary protein, able to replace the standard ELISA used in previous studies. Our rSP03B sero-strip showed to be highly sensitive and specific in the detection of antibodies (IgG) against P. perniciosus saliva. In the future, this test can be employed during large-scale epidemiological studies of CanL in the Mediterranean area to evaluate the efficacy of vector control programs.
- MeSH
- časové faktory MeSH
- chromatografie afinitní veterinární MeSH
- ELISA metody MeSH
- hmyz - vektory MeSH
- hmyzí proteiny MeSH
- kousnutí a bodnutí hmyzem imunologie veterinární MeSH
- Leishmania infantum MeSH
- nemoci psů diagnóza parazitologie MeSH
- Phlebotomus imunologie MeSH
- psi MeSH
- reagenční papírky MeSH
- senzitivita a specificita MeSH
- sérologické testy veterinární MeSH
- zoonózy MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hmyzí proteiny MeSH
- reagenční papírky MeSH