Nejvíce citovaný článek - PubMed ID 22480752
Recently, in the past decade, high-frequency oscillations (HFOs), very high-frequency oscillations (VHFOs), and ultra-fast oscillations (UFOs) were reported in epileptic patients with drug-resistant epilepsy. However, to this day, the physiological origin of these events has yet to be understood. Our study establishes a mathematical framework based on bifurcation theory for investigating the occurrence of VHFOs and UFOs in depth EEG signals of patients with focal epilepsy, focusing on the potential role of reduced connection strength between neurons in an epileptic focus. We demonstrate that synchronization of a weakly coupled network can generate very and ultra high-frequency signals detectable by nearby microelectrodes. In particular, we show that a bistability region enables the persistence of phase-shift synchronized clusters of neurons. This phenomenon is observed for different hippocampal neuron models, including Morris-Lecar, Destexhe-Paré, and an interneuron model. The mechanism seems to be robust for small coupling, and it also persists with random noise affecting the external current. Our findings suggest that weakened neuronal connections could contribute to the production of oscillations with frequencies above 1000 Hz, which could advance our understanding of epilepsy pathology and potentially improve treatment strategies. However, further exploration of various coupling types and complex network models is needed.
We have built a mathematical framework to examine how a reduced neuronal coupling within an epileptic focus could lead to very high-frequency (VHFOs) and ultra-fast oscillations (UFOs) in depth EEG signals. By analyzing weakly coupled neurons, we found a bistability synchronization region where in-phase and anti-phase synchrony persist. These dynamics can be detected as very high-frequency EEG signals. The principle of weak coupling aligns with the disturbances in neuronal connections often observed in epilepsy; moreover, VHFOs are important markers of epileptogenicity. Our findings point to the potential significance of weakened neuronal connections in producing VHFOs and UFOs related to focal epilepsy. This could enhance our understanding of brain disorders. We emphasize the need for further investigations of weakly coupled neurons.
- Klíčová slova
- Bifurcations, Epilepsy, Neuronal network model, Phase-shift synchrony, Ultra-fast oscillations, Very high-frequency oscillations,
- Publikační typ
- časopisecké články MeSH
Very high-frequency oscillations (VHFOs, > 500 Hz) are more specific in localizing the epileptogenic zone (EZ) than high-frequency oscillations (HFOs, < 500 Hz). Unfortunately, VHFOs are not visible in standard clinical stereo-EEG (SEEG) recordings with sampling rates of 1 kHz or lower. Here we show that "shadows" of VHFOs can be found in frequencies below 500 Hz and can help us to identify SEEG channels with a higher probability of increased VHFO rates. Subsequent analysis of Logistic regression models on 141 SEEG channels from thirteen patients shows that VHFO "shadows" provide additional information to gold standard HFO analysis and can potentially help in precise EZ delineation in standard clinical recordings.
Epilepsy is a very common disease affecting at least 1% of the population, comprising a number of over 50 million people. As many patients suffer from the drug-resistant version, the number of potential treatment methods is very small. However, since not only the treatment of epilepsy, but also its proper diagnosis or observation of brain signals from recordings are important research areas, in this paper, we address this very problem by developing a reliable technique for removing spikes and sharp transients from the baseline of the brain signal using a morphological filter. This allows much more precise identification of the so-called epileptic zone, which can then be resected, which is one of the methods of epilepsy treatment. We used eight patients with 5 KHz data set and depended upon the Staba 2002 algorithm as a reference to detect the ripples. We found that the average sensitivity and false detection rate of our technique are significant, and they are ∼94% and ∼14%, respectively.
- Klíčová slova
- brain signals, dynamic threshold, epilepsy, morphological filter, ripples, spikes,
- MeSH
- algoritmy MeSH
- elektroencefalografie * metody MeSH
- epilepsie * diagnóza MeSH
- lidé MeSH
- mapování mozku MeSH
- mozek MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Dynamics underlying epileptic seizures span multiple scales in space and time, therefore, understanding seizure mechanisms requires identifying the relations between seizure components within and across these scales, together with the analysis of their dynamical repertoire. In this view, mathematical models have been developed, ranging from single neuron to neural population. In this study, we consider a neural mass model able to exactly reproduce the dynamics of heterogeneous spiking neural networks. We combine mathematical modeling with structural information from non invasive brain imaging, thus building large-scale brain network models to explore emergent dynamics and test the clinical hypothesis. We provide a comprehensive study on the effect of external drives on neuronal networks exhibiting multistability, in order to investigate the role played by the neuroanatomical connectivity matrices in shaping the emergent dynamics. In particular, we systematically investigate the conditions under which the network displays a transition from a low activity regime to a high activity state, which we identify with a seizure-like event. This approach allows us to study the biophysical parameters and variables leading to multiple recruitment events at the network level. We further exploit topological network measures in order to explain the differences and the analogies among the subjects and their brain regions, in showing recruitment events at different parameter values. We demonstrate, along with the example of diffusion-weighted magnetic resonance imaging (dMRI) connectomes of 20 healthy subjects and 15 epileptic patients, that individual variations in structural connectivity, when linked with mathematical dynamic models, have the capacity to explain changes in spatiotemporal organization of brain dynamics, as observed in network-based brain disorders. In particular, for epileptic patients, by means of the integration of the clinical hypotheses on the epileptogenic zone (EZ), i.e., the local network where highly synchronous seizures originate, we have identified the sequence of recruitment events and discussed their links with the topological properties of the specific connectomes. The predictions made on the basis of the implemented set of exact mean-field equations turn out to be in line with the clinical pre-surgical evaluation on recruited secondary networks.
Hippocampal high-frequency electrographic activity (HFOs) represents one of the major discoveries not only in epilepsy research but also in cognitive science over the past few decades. A fundamental challenge, however, has been the fact that physiological HFOs associated with normal brain function overlap in frequency with pathological HFOs. We investigated the impact of a cognitive task on HFOs with the aim of improving differentiation between epileptic and non-epileptic hippocampi in humans. Hippocampal activity was recorded with depth electrodes in 15 patients with focal epilepsy during a resting period and subsequently during a cognitive task. HFOs in ripple and fast ripple frequency ranges were evaluated in both conditions, and their rate, spectral entropy, relative amplitude and duration were compared in epileptic and non-epileptic hippocampi. The similarity of HFOs properties recorded at rest in epileptic and non-epileptic hippocampi suggests that they cannot be used alone to distinguish between hippocampi. However, both ripples and fast ripples were observed with higher rates, higher relative amplitudes and longer durations at rest as well as during a cognitive task in epileptic compared with non-epileptic hippocampi. Moreover, during a cognitive task, significant reductions of HFOs rates were found in epileptic hippocampi. These reductions were not observed in non-epileptic hippocampi. Our results indicate that although both hippocampi generate HFOs with similar features that probably reflect non-pathological phenomena, it is possible to differentiate between epileptic and non-epileptic hippocampi using a simple odd-ball task.
- MeSH
- dospělí MeSH
- elektroencefalografie přístrojové vybavení MeSH
- epilepsie temporálního laloku diagnóza patofyziologie terapie MeSH
- hipokampus patofyziologie MeSH
- implantované elektrody MeSH
- kognice fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozkové vlny fyziologie MeSH
- neuropsychologické testy MeSH
- refrakterní epilepsie diagnóza patofyziologie terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- práce podpořená grantem MeSH
OBJECTIVE: This study investigates high-frequency oscillations (HFOs; 65-600 Hz) as a biomarker of epileptogenic brain and explores three barriers to their clinical translation: (1) Distinguishing pathological HFOs (pathHFO) from physiological HFOs (physHFO). (2) Classifying tissue under individual electrodes as epileptogenic (3) Reproducing results across laboratories. METHODS: We recorded HFOs using intracranial EEG (iEEG) in 90 patients with focal epilepsy and 11 patients without epilepsy. In nine patients with epilepsy putative physHFOs were induced by cognitive or motor tasks. HFOs were identified using validated detectors. A support vector machine (SVM) using HFO features was developed to classify tissue under individual electrodes as normal or epileptogenic. RESULTS: There was significant overlap in the amplitude, frequency, and duration distributions for spontaneous physHFO, task induced physHFO, and pathHFO, but the amplitudes of the pathHFO were higher (P < 0.0001). High gamma pathHFO had the strongest association with seizure onset zone (SOZ), and were elevated on SOZ electrodes in 70% of epilepsy patients (P < 0.0001). Failure to resect tissue generating high gamma pathHFO was associated with poor outcomes (P < 0.0001). A SVM classified individual electrodes as epileptogenic with 63.9% sensitivity and 73.7% specificity using SOZ as the target. INTERPRETATION: A broader range of interictal pathHFO (65-600 Hz) than previously recognized are biomarkers of epileptogenic brain, and are associated with SOZ and surgical outcome. Classification of HFOs into physiological or pathological remains challenging. Classification of tissue under individual electrodes was demonstrated to be feasible. The open source data and algorithms provide a resource for future studies.
- Publikační typ
- časopisecké články MeSH
High-frequency oscillations (HFOs: 100 - 600 Hz) have been widely proposed as biomarkers of epileptic brain tissue. In addition, HFOs over a broader range of frequencies spanning 30 - 2000 Hz are potential biomarkers of both physiological and pathological brain processes. The majority of the results from humans with focal epilepsy have focused on HFOs recorded directly from the brain with intracranial EEG (iEEG) in the high gamma (65 - 100 Hz), ripple (100 - 250 Hz), and fast ripple (250 - 600 Hz) frequency ranges. These results are supplemented by reports of HFOs recorded with iEEG in the low gamma (30 - 65Hz) and very high frequency (500 - 2000 Hz) ranges. Visual detection of HFOs is laborious and limited by poor inter-rater agreement; and the need for accurate, reproducible automated HFOs detection is well recognized. In particular, the clinical translation of HFOs as a biomarker of the epileptogenic brain has been limited by the ability to reliably detect and accurately classify HFOs as physiological or pathological. Despite these challenges, there has been significant progress in the field, which is the subject of this review. Furthermore, we provide data and corresponding analytic code in an effort to promote reproducible research and accelerate clinical translation.
- Publikační typ
- časopisecké články MeSH
Modern electroencephalographic (EEG) technology contributed to the appreciation that the EEG signal outside the classical Berger frequency band contains important information. In epilepsy, research of the past decade focused particularly on interictal high-frequency oscillations (HFOs) > 80 Hz. The first large application of HFOs was in the context of epilepsy surgery. This is now followed by other applications such as assessment of epilepsy severity and monitoring of antiepileptic therapy. This article reviews the evidence on the clinical use of HFOs in epilepsy with an emphasis on the latest developments. It highlights the growing literature on the association between HFOs and postsurgical seizure outcome. A recent meta-analysis confirmed a higher resection ratio for HFOs in seizure-free versus non-seizure-free patients. Residual HFOs in the postoperative electrocorticogram were shown to predict epilepsy surgery outcome better than preoperative HFO rates. The review further discusses the different attempts to separate physiological from epileptic HFOs, as this might increase the specificity of HFOs. As an example, analysis of sleep microstructure demonstrated a different coupling between HFOs inside and outside the epileptogenic zone. Moreover, there is increasing evidence that HFOs are useful to measure disease activity and assess treatment response using noninvasive EEG and magnetoencephalography. This approach is particularly promising in children, because they show high scalp HFO rates. HFO rates in West syndrome decrease after adrenocorticotropic hormone treatment. Presence of HFOs at the time of rolandic spikes correlates with seizure frequency. The time-consuming visual assessment of HFOs, which prevented their clinical application in the past, is now overcome by validated computer-assisted algorithms. HFO research has considerably advanced over the past decade, and use of noninvasive methods will make HFOs accessible to large numbers of patients. Prospective multicenter trials are awaited to gather information over long recording periods in large patient samples.
- Klíčová slova
- Biomarker, Scalp EEG, Seizure, Sleep, Surgical outcome,
- MeSH
- biologické hodiny fyziologie MeSH
- biomedicínský výzkum * MeSH
- elektroencefalografie MeSH
- epilepsie diagnóza patofyziologie MeSH
- lidé MeSH
- mapování mozku MeSH
- mozkové vlny fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
PURPOSE OF REVIEW: Localization of focal epileptic brain is critical for successful epilepsy surgery and focal brain stimulation. Despite significant progress, roughly half of all patients undergoing focal surgical resection, and most patients receiving focal electrical stimulation, are not seizure free. There is intense interest in high-frequency oscillations (HFOs) recorded with intracranial electroencephalography as potential biomarkers to improve epileptogenic brain localization, resective surgery, and focal electrical stimulation. The present review examines the evidence that HFOs are clinically useful biomarkers. RECENT FINDINGS: Performing the PubMed search 'High-Frequency Oscillations and Epilepsy' for 2013-2015 identifies 308 articles exploring HFO characteristics, physiological significance, and potential clinical applications. SUMMARY: There is strong evidence that HFOs are spatially associated with epileptic brain. There remain, however, significant challenges for clinical translation of HFOs as epileptogenic brain biomarkers: Differentiating true HFO from the high-frequency power changes associated with increased neuronal firing and bandpass filtering sharp transients. Distinguishing pathological HFO from normal physiological HFO. Classifying tissue under individual electrodes as normal or pathological. Sharing data and algorithms so research results can be reproduced across laboratories. Multicenter prospective trials to provide definitive evidence of clinical utility.
- MeSH
- biologické markery analýza MeSH
- elektrická stimulace * metody MeSH
- elektroencefalografie metody MeSH
- epilepsie parciální diagnóza patofyziologie MeSH
- lidé MeSH
- mapování mozku * MeSH
- mozek patofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- biologické markery MeSH
BACKGROUND: Until now there has been no way of distinguishing between physiological and epileptic hippocampal ripples in intracranial recordings. In the present study we addressed this by investigating the effect of cognitive stimulation on interictal high frequency oscillations in the ripple range (80-250 Hz) within epileptic (EH) and non-epileptic hippocampus (NH). METHODS: We analyzed depth EEG recordings in 10 patients with intractable epilepsy, in whom hippocampal activity was recorded initially during quiet wakefulness and subsequently during a simple cognitive task. Using automated detection of ripples based on amplitude of the power envelope, we analyzed ripple rate (RR) in the cognitive and resting period, within EH and NH. RESULTS: Compared to quiet wakefulness we observed a significant reduction of RR during cognitive stimulation in EH, while it remained statistically marginal in NH. Further, we investigated the direct impact of cognitive stimuli on ripples (i.e. immediately post-stimulus), which showed a transient statistically significant suppression of ripples in the first second after stimuli onset in NH only. CONCLUSION: Our results point to a differential reactivity of ripples within EH and NH to cognitive stimulation.
- MeSH
- bdění MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- epilepsie patofyziologie MeSH
- hipokampus patofyziologie MeSH
- implantované elektrody MeSH
- kognice fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- neuropsychologické testy MeSH
- odpočinek MeSH
- rozpoznávání automatizované MeSH
- zraková percepce fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH