Nejvíce citovaný článek - PubMed ID 22534699
Intracerebellar application of P19-derived neuroprogenitor and naive stem cells to Lurcher mutant and wild type B6CBA mice
Cerebellar extinction lesions can manifest themselves with cerebellar motor and cerebellar cognitive affective syndromes. For investigation of the functions of the cerebellum and the pathogenesis of cerebellar diseases, particularly hereditary neurodegenerative cerebellar ataxias, various cerebellar mutant mice are used. The Lurcher mouse is a model of selective olivocerebellar degeneration with early onset and rapid progress. These mice show both motor deficits as well as cognitive and behavioral changes i.e., pathological phenotype in the functional domains affected in cerebellar patients. Therefore, Lurcher mice might be considered as a tool to investigate the mechanisms of functional impairments caused by cerebellar degenerative diseases. There are, however, limitations due to the particular features of the neurodegenerative process and a lack of possibilities to examine some processes in mice. The main advantage of Lurcher mice would be the expected absence of significant neuropathologies outside the olivocerebellar system that modify the complex behavioral phenotype in less selective models. However, detailed examinations and further thorough validation of the model are needed to verify this assumption.
- Klíčová slova
- Ataxia, Cerebellar Cognitive Affective Syndrome, Cerebellum, Lurcher Mouse, Validity,
- MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- mozeček patologie patofyziologie MeSH
- myši - mutanty neurologické MeSH
- myši MeSH
- nemoci mozečku * genetika patologie patofyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Spinocerebellar ataxias (SCAs) represent a large group of hereditary degenerative diseases of the nervous system, in particular the cerebellum, and other systems that manifest with a variety of progressive motor, cognitive, and behavioral deficits with the leading symptom of cerebellar ataxia. SCAs often lead to severe impairments of the patient's functioning, quality of life, and life expectancy. For SCAs, there are no proven effective pharmacotherapies that improve the symptoms or substantially delay disease progress, i.e., disease-modifying therapies. To study SCA pathogenesis and potential therapies, animal models have been widely used and are an essential part of pre-clinical research. They mainly include mice, but also other vertebrates and invertebrates. Each animal model has its strengths and weaknesses arising from model animal species, type of genetic manipulation, and similarity to human diseases. The types of murine and non-murine models of SCAs, their contribution to the investigation of SCA pathogenesis, pathological phenotype, and therapeutic approaches including their advantages and disadvantages are reviewed in this paper. There is a consensus among the panel of experts that (1) animal models represent valuable tools to improve our understanding of SCAs and discover and assess novel therapies for this group of neurological disorders characterized by diverse mechanisms and differential degenerative progressions, (2) thorough phenotypic assessment of individual animal models is required for studies addressing therapeutic approaches, (3) comparative studies are needed to bring pre-clinical research closer to clinical trials, and (4) mouse models complement cellular and invertebrate models which remain limited in terms of clinical translation for complex neurological disorders such as SCAs.
- Klíčová slova
- Genetics, Models, Murine, Non-murine, Pathogenesis, Spinocerebellar ataxias, Therapies, Translational,
- MeSH
- konsensus MeSH
- kvalita života * MeSH
- modely u zvířat MeSH
- mozeček patologie MeSH
- myši MeSH
- spinocerebelární ataxie * diagnóza genetika terapie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Cerebellar diseases causing substantial cell loss often lead to severe functional deficits and restoration of cerebellar function is difficult. Neurotransplantation therapy could become a hopeful method, but there are still many limitations and unknown aspects. Studies in a variety of cerebellar mutant mice reflecting heterogeneity of human cerebellar degenerations show promising results as well as new problems and questions to be answered. The aim of this work was to compare the development of embryonic cerebellar grafts in adult B6CBA Lurcher and B6.BR pcd mutant mice and strain-matched healthy wild type mice. Performance in the rotarod test, graft survival, structure, and volume was examined 2 months after the transplantation or sham-operation. The grafts survived in most of the mice of all types. In both B6CBA and B6.BR wild type mice and in pcd mice, colonization of the host's cerebellum was a common finding, while in Lurcher mice, the grafts showed a low tendency to infiltrate the host's cerebellar tissue. There were no significant differences in graft volume between mutant and wild type mice. Nevertheless, B6CBA mice had smaller grafts than their B6.BR counterparts. The transplantation did not improve the performance in the rotarod test. The study showed marked differences in graft integration into the host's cerebellum in two types of cerebellar mutants, suggesting disease-specific factors influencing graft fate.
- Klíčová slova
- Ataxia, Cerebellar degeneration, Lurcher mouse, Neurotransplantation, Pcd mouse,
- MeSH
- modely nemocí na zvířatech * MeSH
- mozeček fyziologie transplantace MeSH
- myši - mutanty neurologické MeSH
- myši inbrední C57BL MeSH
- myši inbrední CBA MeSH
- myši MeSH
- nemoci mozečku patologie terapie MeSH
- neurodegenerativní nemoci patologie terapie MeSH
- přežívání štěpu fyziologie MeSH
- transplantace fetální tkáně metody MeSH
- transplantace mozkové tkáně metody MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Hereditary cerebellar ataxias are severe diseases for which therapy is currently not sufficiently effective. One of the possible therapeutic approaches could be neurotransplantation. Lurcher mutant mice are a natural model of olivocerebellar degeneration representing a tool to investigate its pathogenesis as well as experimental therapies for hereditary cerebellar ataxias. The effect of intracerebellar transplantation of embryonic cerebellar solid tissue or cell suspension on motor performance in adult Lurcher mutant and healthy wild-type mice was studied. Brain-derived neurotrophic factor level was measured in the graft and adult cerebellar tissue. Gait analysis and rotarod, horizontal wire, and wooden beam tests were carried out 2 or 6 months after the transplantation. Higher level of the brain-derived neurotrophic factor was found in the Lurcher cerebellum than in the embryonic and adult wild-type tissue. A mild improvement of gait parameters was found in graft-treated Lurcher mice. The effect was more marked in cell suspension grafts than in solid transplants and after the longer period than after the short one. Lurcher mice treated with cell suspension and examined 6 months later had a longer hind paw stride (4.11 vs. 3.73 mm, P < 0.05) and higher swing speed for both forepaws (52.46 vs. 32.79 cm/s, P < 0.01) and hind paws (63.46 vs. 43.67 cm/s, P < 0.001) than controls. On the other hand, classical motor tests were not capable of detecting clearly the change in the motor performance. No strong long-lasting negative effect of the transplantation was seen in wild-type mice, suggesting that the treatment has no harmful impact on the healthy cerebellum.
- Klíčová slova
- Ataxia, Cerebellar transplantation, Gait analysis, Lurcher, Olivocerebellar degeneration,
- MeSH
- časové faktory MeSH
- chůze (způsob) MeSH
- metoda rotující tyčky MeSH
- mozeček embryologie metabolismus transplantace MeSH
- mozkový neurotrofický faktor metabolismus MeSH
- multisystémová atrofie patofyziologie terapie MeSH
- myši - mutanty neurologické MeSH
- myši inbrední C57BL MeSH
- myši inbrední CBA MeSH
- myši transgenní MeSH
- pohybová aktivita MeSH
- spinocerebelární degenerace patofyziologie terapie MeSH
- transplantace fetální tkáně metody MeSH
- transplantace mozkové tkáně metody MeSH
- výsledek terapie MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- enhanced green fluorescent protein MeSH Prohlížeč
- mozkový neurotrofický faktor MeSH
- zelené fluorescenční proteiny MeSH