Nejvíce citovaný článek - PubMed ID 22569586
Disparate phenotypic effects from the knockdown of various Trypanosoma brucei cytochrome c oxidase subunits
Mitochondrial ATP synthase is a reversible nanomotor synthesizing or hydrolyzing ATP depending on the potential across the membrane in which it is embedded. In the unicellular parasite Trypanosoma brucei, the direction of the complex depends on the life cycle stage of this digenetic parasite: in the midgut of the tsetse fly vector (procyclic form), the FoF1-ATP synthase generates ATP by oxidative phosphorylation, whereas in the mammalian bloodstream form, this complex hydrolyzes ATP and maintains mitochondrial membrane potential (ΔΨm). The trypanosome FoF1-ATP synthase contains numerous lineage-specific subunits whose roles remain unknown. Here, we seek to elucidate the function of the lineage-specific protein Tb1, the largest membrane-bound subunit. In procyclic form cells, Tb1 silencing resulted in a decrease of FoF1-ATP synthase monomers and dimers, rerouting of mitochondrial electron transfer to the alternative oxidase, reduced growth rate and cellular ATP levels, and elevated ΔΨm and total cellular reactive oxygen species levels. In bloodstream form parasites, RNAi silencing of Tb1 by ∼90% resulted in decreased FoF1-ATPase monomers and dimers, but it had no apparent effect on growth. The same findings were obtained by silencing of the oligomycin sensitivity-conferring protein, a conserved subunit in T. brucei FoF1-ATP synthase. However, as expected, nearly complete Tb1 or oligomycin sensitivity-conferring protein suppression was lethal because of the inability to sustain ΔΨm. The diminishment of FoF1-ATPase complexes was further accompanied by a decreased ADP/ATP ratio and reduced oxygen consumption via the alternative oxidase. Our data illuminate the often diametrically opposed bioenergetic consequences of FoF1-ATP synthase loss in insect versus mammalian forms of the parasite.
- Klíčová slova
- ATP synthase, ATPase, Trypanosoma brucei, alternative oxidase, bioenergetics, electron transport, mitochondria, mitochondrial membrane potential, oxidative phosphorylation, respiration,
- MeSH
- adenosintrifosfát genetika metabolismus MeSH
- buněčný cyklus * MeSH
- energetický metabolismus * MeSH
- membránový potenciál mitochondrií MeSH
- mitochondrie genetika metabolismus MeSH
- protonové ATPasy nedostatek metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- protonové ATPasy MeSH
- protozoální proteiny MeSH
Mitochondrial metabolic remodeling is a hallmark of the Trypanosoma brucei digenetic life cycle because the insect stage utilizes a cost-effective oxidative phosphorylation (OxPhos) to generate ATP, while bloodstream cells switch to aerobic glycolysis. Due to difficulties in acquiring enough parasites from the tsetse fly vector, the dynamics of the parasite's metabolic rewiring in the vector have remained obscure. Here, we took advantage of in vitro-induced differentiation to follow changes at the RNA, protein, and metabolite levels. This multi-omics and cell-based profiling showed an immediate redirection of electron flow from the cytochrome-mediated pathway to an alternative oxidase (AOX), an increase in proline consumption, elevated activity of complex II, and certain tricarboxylic acid (TCA) cycle enzymes, which led to mitochondrial membrane hyperpolarization and increased reactive oxygen species (ROS) levels. Interestingly, these ROS molecules appear to act as signaling molecules driving developmental progression because ectopic expression of catalase, a ROS scavenger, halted the in vitro-induced differentiation. Our results provide insights into the mechanisms of the parasite's mitochondrial rewiring and reinforce the emerging concept that mitochondria act as signaling organelles through release of ROS to drive cellular differentiation.
- MeSH
- adenosintrifosfát biosyntéza MeSH
- buněčná diferenciace účinky léků MeSH
- buněčné dýchání účinky léků MeSH
- buněčné linie MeSH
- elektrony MeSH
- glukosa farmakologie MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- metabolické sítě a dráhy účinky léků MeSH
- metabolomika * MeSH
- mitochondriální proteiny metabolismus MeSH
- mitochondrie účinky léků metabolismus MeSH
- oxidace-redukce MeSH
- oxidoreduktasy metabolismus MeSH
- prolin metabolismus MeSH
- proteom metabolismus MeSH
- protozoální proteiny metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- signální transdukce MeSH
- transkriptom genetika MeSH
- transport elektronů účinky léků MeSH
- Trypanosoma brucei brucei účinky léků genetika růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- alternative oxidase MeSH Prohlížeč
- glukosa MeSH
- mitochondriální proteiny MeSH
- oxidoreduktasy MeSH
- prolin MeSH
- proteom MeSH
- protozoální proteiny MeSH
- reaktivní formy kyslíku MeSH
- rostlinné proteiny MeSH
Lipophilic bisphosphonium salts are among the most promising antiprotozoal leads currently under investigation. As part of their preclinical evaluation we here report on their mode of action against African trypanosomes, the etiological agents of sleeping sickness. The bisphosphonium compounds CD38 and AHI-9 exhibited rapid inhibition of Trypanosoma brucei growth, apparently the result of cell cycle arrest that blocked the replication of mitochondrial DNA, contained in the kinetoplast, thereby preventing the initiation of S-phase. Incubation with either compound led to a rapid reduction in mitochondrial membrane potential, and ATP levels decreased by approximately 50% within 1 h. Between 4 and 8 h, cellular calcium levels increased, consistent with release from the depolarized mitochondria. Within the mitochondria, the Succinate Dehydrogenase complex (SDH) was investigated as a target for bisphosphonium salts, but while its subunit 1 (SDH1) was present at low levels in the bloodstream form trypanosomes, the assembled complex was hardly detectable. RNAi knockdown of the SDH1 subunit produced no growth phenotype, either in bloodstream or in the procyclic (insect) forms and we conclude that in trypanosomes SDH is not the target for bisphosphonium salts. Instead, the compounds inhibited ATP production in intact mitochondria, as well as the purified F1 ATPase, to a level that was similar to 1 mM azide. Co-incubation with azide and bisphosphonium compounds did not inhibit ATPase activity more than either product alone. The results show that, in T. brucei, bisphosphonium compounds do not principally act on succinate dehydrogenase but on the mitochondrial FoF1 ATPase.
- Klíčová slova
- FoF1 ATPase, Mitochondrion, Phosphonium salt, SDH complex, Succinate dehydrogenase, Trypanosoma brucei,
- MeSH
- adenosintrifosfát metabolismus MeSH
- azidy farmakologie MeSH
- buněčné linie MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- mitochondriální DNA metabolismus MeSH
- mitochondrie účinky léků genetika metabolismus MeSH
- organofosforové sloučeniny chemie farmakologie MeSH
- protonové ATPasy metabolismus MeSH
- RNA interference MeSH
- sukcinátdehydrogenasa metabolismus MeSH
- trypanocidální látky farmakologie MeSH
- Trypanosoma brucei brucei cytologie účinky léků růst a vývoj MeSH
- trypanozomóza africká parazitologie MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- azidy MeSH
- mitochondriální DNA MeSH
- organofosforové sloučeniny MeSH
- protonové ATPasy MeSH
- sukcinátdehydrogenasa MeSH
- trypanocidální látky MeSH
- vápník MeSH
The highly conserved ADP/ATP carrier (AAC) is a key energetic link between the mitochondrial (mt) and cytosolic compartments of all aerobic eukaryotic cells, as it exchanges the ATP generated inside the organelle for the cytosolic ADP. Trypanosoma brucei, a parasitic protist of medical and veterinary importance, possesses a single functional AAC protein (TbAAC) that is related to the human and yeast ADP/ATP carriers. However, unlike previous studies performed with these model organisms, this study showed that TbAAC is most likely not a stable component of either the respiratory supercomplex III+IV or the ATP synthasome but rather functions as a physically separate entity in this highly diverged eukaryote. Therefore, TbAAC RNA interference (RNAi) ablation in the insect stage of T. brucei does not impair the activity or arrangement of the respiratory chain complexes. Nevertheless, RNAi silencing of TbAAC caused a severe growth defect that coincides with a significant reduction of mt ATP synthesis by both substrate and oxidative phosphorylation. Furthermore, TbAAC downregulation resulted in a decreased level of cytosolic ATP, a higher mt membrane potential, an elevated amount of reactive oxygen species, and a reduced consumption of oxygen in the mitochondria. Interestingly, while TbAAC has previously been demonstrated to serve as the sole ADP/ATP carrier for ADP influx into the mitochondria, our data suggest that a second carrier for ATP influx may be present and active in the T. brucei mitochondrion. Overall, this study provides more insight into the delicate balance of the functional relationship between TbAAC and the oxidative phosphorylation (OXPHOS) pathway in an early diverged eukaryote.
- MeSH
- mitochondriální ADP/ATP-translokasy chemie genetika metabolismus MeSH
- molekulární evoluce * MeSH
- oxidativní fosforylace * MeSH
- protozoální proteiny chemie genetika metabolismus MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální ADP/ATP-translokasy MeSH
- protozoální proteiny MeSH