Nejvíce citovaný článek - PubMed ID 22761955
Phylogeography of the Microcoleus vaginatus (Cyanobacteria) from three continents--a spatial and temporal characterization
Speciation is a continuous process driven by genetic, geographic, and ecological barriers to gene flow. It is widely investigated in multicellular eukaryotes, yet we are only beginning to comprehend the relative importance of mechanisms driving the emergence of barriers to gene flow in microbial populations. Here, we explored the diversification of the nearly ubiquitous soil cyanobacterium Microcoleus. Our dataset consisted of 291 genomes, of which 202 strains and eight herbarium specimens were sequenced for this study. We found that Microcoleus represents a global speciation continuum of at least 12 lineages, which radiated during Eocene/Oligocene aridification and exhibit varying degrees of divergence and gene flow. The lineage divergence has been driven by selection, geographical distance, and the environment. Evidence of genetic divergence and selection was widespread across the genome, but we identified regions of exceptional differentiation containing candidate genes associated with stress response and biosynthesis of secondary metabolites.
- MeSH
- fylogeneze MeSH
- genetický drift * MeSH
- genom MeSH
- tok genů MeSH
- vznik druhů (genetika) * MeSH
- Publikační typ
- časopisecké články MeSH
Cyanobacteria are crucial primary producers in soil and soil crusts. However, their biodiversity in these habitats remains poorly understood, especially in the tropical and polar regions. We employed whole genome sequencing, morphology, and ecology to describe a novel cyanobacterial genus Argonema isolated from Antarctica. Extreme environments are renowned for their relatively high number of endemic species, but whether cyanobacteria are endemic or not is open to much current debate. To determine if a cyanobacterial lineage is endemic is a time consuming, elaborate, and expensive global sampling effort. Thus, we propose an approach that will help to overcome the limits of the sampling effort and better understand the global distribution of cyanobacterial clades. We employed a Sequencing Read Archive, which provides a rich source of data from thousands of environmental samples. We developed a framework for a characterization of the global distribution of any microbial species using Sequencing Read Archive. Using this approach, we found that Argonema is actually cosmopolitan in arid regions. It provides further evidence that endemic microbial taxa are likely to be much rarer than expected.
- MeSH
- pouštní klima MeSH
- půda * MeSH
- půdní mikrobiologie MeSH
- RNA ribozomální 16S genetika MeSH
- sinice * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda * MeSH
- RNA ribozomální 16S MeSH
Cyanobacteria represent a bacterial phyllum characteristic by the ability to photosynthesize. They are potentially applicable for the production of useful compounds but may also cause poisoning or at least health problems as they can produce cyanotoxins. The introduction of a fast methodology is important not only for fundamental taxonomic purposes, but also for reliable identifications in biological studies. In this work, we have used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of intact cells to study Chroococcidiopsis strains. A library of the obtained reference mass spectra containing characteristic peptide/protein profiles was examined by software tools to characterize similarities and differences applicable for diagnostics and taxonomy. Both a similarity tree and heat map constructed from the mass spectrometric data proved consistent with 16S rRNA sequencing results. We show as novelty that a binary matrix combining ferulic and sinapinic acids performs well in acquiring reproducible mass spectra of cyanobacteria. Using the matrix solvent, a protein extraction from cells was done. After polyacrylamide gel electrophoresis, the separated protein fractions were in-gel digested and the resulting peptides analyzed by liquid chromatography coupled with tandem mass spectrometry. For the first time, photosystem protein components, phycobilisome proteins, electron transport proteins, nitrogen-metabolism and nucleic acids binding-proteins, cytochromes plus other enzymes and various uncharacterized proteins could be assigned to characteristic peaks in the mass spectrometric profiles and some of them suggested as markers in addition to 30S and 50S ribosomal proteins known from previous studies employing intact cell mass spectrometry of microorganisms.
- MeSH
- bakteriální proteiny analýza izolace a purifikace MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- fylogeneze MeSH
- peptidy analýza izolace a purifikace MeSH
- RNA ribozomální 16S genetika MeSH
- sinice chemie klasifikace genetika MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- peptidy MeSH
- RNA ribozomální 16S MeSH