Most cited article - PubMed ID 22837159
"Click & seed" approach to the biomimetic modification of material surfaces
Antifouling polymer layers containing extracellular matrix-derived peptide motifs offer promising new options for biomimetic surface engineering. In this contribution, we report the design of antifouling vascular grafts bearing biofunctional peptide motifs for tissue regeneration applications based on hierarchical polymer brushes. Hierarchical diblock poly(methyl ether oligo(ethylene glycol) methacrylate-block-glycidyl methacrylate) brushes bearing azide groups (poly(MeOEGMA-block-GMA-N3)) were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) and functionalized with biomimetic RGD peptide sequences. Varying the conditions of copper-catalyzed alkyne-azide "click" reaction allowed for the immobilization of RGD peptides in a wide surface concentration range. The synthesized hierarchical polymer brushes bearing peptide motifs were characterized in detail using various surface sensitive physicochemical methods. The hierarchical brushes presenting the RGD sequences provided excellent cell adhesion properties and at the same time remained resistant to fouling from blood plasma. The synthesis of anti-fouling hierarchical brushes bearing 1.2 × 103 nmol/cm2 RGD biomimetic sequences has been adapted for the surface modification of commercially available grafts of woven polyethylene terephthalate (PET) fibers. The fiber mesh was endowed with polymerization initiator groups via aminolysis and acylation reactions optimized for the material. The obtained bioactive antifouling vascular grafts promoted the specific adhesion and growth of endothelial cells, thus providing a potential avenue for endothelialization of artificial conduits.
- Keywords
- RGD peptide, X-ray photoelectron spectroscopy, biomimetic surface, hierarchical bioactive polymer brushes, vascular graft, “click”-chemistry,
- MeSH
- Adsorption MeSH
- Amino Acid Motifs MeSH
- Azides chemistry MeSH
- Coated Materials, Biocompatible * MeSH
- Biomimetic Materials * MeSH
- Cell Adhesion MeSH
- Cell Division MeSH
- Endothelium, Vascular physiology MeSH
- Blood Vessel Prosthesis * MeSH
- Click Chemistry MeSH
- Human Umbilical Vein Endothelial Cells MeSH
- Immobilized Proteins MeSH
- Silicon MeSH
- Plasma MeSH
- Blood Proteins MeSH
- Humans MeSH
- Oligopeptides chemistry MeSH
- Polyethylene Terephthalates chemistry MeSH
- Polymerization * MeSH
- Surface Properties MeSH
- Guided Tissue Regeneration instrumentation MeSH
- Glass MeSH
- Materials Testing MeSH
- Thrombosis prevention & control MeSH
- Gold MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- arginyl-glycyl-aspartic acid MeSH Browser
- Azides MeSH
- Coated Materials, Biocompatible * MeSH
- Immobilized Proteins MeSH
- Silicon MeSH
- Blood Proteins MeSH
- Oligopeptides MeSH
- Polyethylene Terephthalates MeSH
- Gold MeSH
Lanthanide-doped upconversion nanoparticles (UCNPs) have a unique capability of upconverting near-infrared (NIR) excitation into ultraviolet, visible, and NIR emission. Conventional UCNPs composed of NaYF4:Yb3+/Er3+(Tm3+) are excited by NIR light at 980 nm, where undesirable absorption by water can cause overheating or damage of living tissues and reduce nanoparticle luminescence. Incorporation of Nd3+ ions into the UCNP lattice shifts the excitation wavelength to 808 nm, where absorption of water is minimal. Herein, core-shell NaYF4:Yb3+/Er3+@NaYF4:Nd3+ nanoparticles, which are doubly doped by sensitizers (Yb3+ and Nd3+) and an activator (Er3+) in the host NaYF4 matrix, were synthesized by high-temperature coprecipitation of lanthanide chlorides in the presence of oleic acid as a stabilizer. Uniform core (24 nm) and core-shell particles with tunable shell thickness (~0.5-4 nm) were thoroughly characterized by transmission electron microscopy (TEM), energy-dispersive analysis, selected area electron diffraction, and photoluminescence emission spectra at 808 and 980 nm excitation. To ensure dispersibility of the particles in biologically relevant media, they were coated by in-house synthesized poly(ethylene glycol) (PEG)-neridronate terminated with an alkyne (Alk). The stability of the NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-Alk nanoparticles in water or 0.01 M PBS and the presence of PEG on the surface were determined by dynamic light scattering, ζ-potential measurements, thermogravimetric analysis, and FTIR spectroscopy. Finally, the adhesive azidopentanoyl-modified GGGRGDSGGGY-NH2 (RGDS) peptide was immobilized on the NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-Alk particles via Cu(I)-catalyzed azide-alkyne cycloaddition. The toxicity of the unmodified core-shell NaYF4:Yb3+/Er3+@NaYF4:Nd3+, NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-Alk, and NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-RGDS nanoparticles on both Hep-G2 and HeLa cells was determined, confirming no adverse effect on their survival and proliferation. The interaction of the nanoparticles with Hep-G2 cells was monitored by confocal microscopy at both 808 and 980 nm excitation. The NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-RGDS nanoparticles were localized on the cell membranes due to specific binding of the RGDS peptide to integrins, in contrast to the NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-Alk particles, which were not engulfed by the cells. The NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-RGDS nanoparticles thus appear to be promising as a new non-invasive probe for specific bioimaging of cells and tissues. This development makes the nanoparticles useful for diagnostic and/or, after immobilization of a bioactive compound, even theranostic applications in the treatment of various fatal diseases.
- Keywords
- 808 nm excitation, Hep-G2 and HeLa cells, PEG-neridronate, RGDS peptide, core-shell, luminescence, upconversion nanoparticles,
- Publication type
- Journal Article MeSH
Protein-repulsive surfaces modified with ligands for cell adhesion receptors have been widely developed for controlling the cell adhesion and growth in tissue engineering. However, the question of matrix production and deposition by cells on these surfaces has rarely been addressed. In this study, protein-repulsive polydopamine-poly(ethylene oxide) (PDA-PEO) surfaces were functionalized with an RGD-containing peptide (RGD), with a collagen-derived peptide binding fibronectin (Col), or by a combination of these peptides (RGD + Col, ratio 1:1) in concentrations of 90 fmol/cm(2) and 700 fmol/cm(2) for each peptide type. When seeded with vascular endothelial CPAE cells, the PDA-PEO surfaces proved to be completely non-adhesive for cells. On surfaces with lower peptide concentrations and from days 1 to 3 after seeding, cell adhesion and growth was restored practically only on the RGD-modified surface. However, from days 3 to 7, cell adhesion and growth was improved on surfaces modified with Col and with RGD + Col. At higher peptide concentrations, the cell adhesion and growth was markedly improved on all peptide-modified surfaces in both culture intervals. However, the collagen-derived peptide did not increase the expression of fibronectin in the cells. The deposition of fibronectin on the material surface was generally very low and similar on all peptide-modified surfaces. Nevertheless, the RGD + Col surfaces exhibited the highest cell adhesion stability under a dynamic load, which correlated with the highest expression of talin and vinculin in the cells on these surfaces. A combination of RGD + Col therefore seems to be the most promising for surface modification of biomaterials, e.g. vascular prostheses.
- MeSH
- Adsorption MeSH
- Biomimetics * MeSH
- Cell Adhesion * MeSH
- Gene Expression MeSH
- Fibronectins chemistry genetics MeSH
- Indoles chemistry MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Molecular Sequence Data MeSH
- Oligopeptides chemistry MeSH
- Polyethylene Glycols chemistry MeSH
- Polymers chemistry MeSH
- Surface Properties MeSH
- Amino Acid Sequence MeSH
- Talin genetics MeSH
- Vinculin genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Fibronectins MeSH
- Indoles MeSH
- Oligopeptides MeSH
- polydopamine MeSH Browser
- Polyethylene Glycols MeSH
- Polymers MeSH
- Talin MeSH
- Vinculin MeSH
Composite materials based on a titanium support and a thin, alginate hydrogel could be used in bone tissue engineering as a scaffold material that provides biologically active molecules. The main objective of this contribution is to characterize the activation and the functionalization of titanium surfaces by the covalent immobilization of anchoring layers of self-assembled bisphosphonate neridronate monolayers and polymer films of 3-aminopropyltriethoxysilane and biomimetic poly(dopamine). These were further used to bind a bio-functional alginate coating. The success of the titanium surface activation, anchoring layer formation and alginate immobilization, as well as the stability upon immersion under physiological-like conditions, are demonstrated by different surface sensitive techniques such as spectroscopic ellipsometry, infrared reflection-absorption spectroscopy and X-ray photoelectron spectroscopy. The changes in morphology and the established continuity of the layers are examined by scanning electron microscopy, surface profilometry and atomic force microscopy. The changes in hydrophilicity after each modification step are further examined by contact angle goniometry.
- Keywords
- XPS, alginate, biomimetic surfaces, bisphosphonates, neridronate, poly(dopamine), spectroscopic ellipsometry, surface characterization, surface modification, titanium,
- Publication type
- Journal Article MeSH
High pressure high temperature (HPHT) nanodiamonds (NDs) represent extremely promising materials for construction of fluorescent nanoprobes and nanosensors. However, some properties of bare NDs limit their direct use in these applications: they precipitate in biological solutions, only a limited set of bio-orthogonal conjugation techniques is available and the accessible material is greatly polydisperse in shape. In this work, we encapsulate bright 30-nm fluorescent nanodiamonds (FNDs) in 10-20-nm thick translucent (i.e., not altering FND fluorescence) silica shells, yielding monodisperse near-spherical particles of mean diameter 66 nm. High yield modification of the shells with PEG chains stabilizes the particles in ionic solutions, making them applicable in biological environments. We further modify the opposite ends of PEG chains with fluorescent dyes or vectoring peptide using click chemistry. High conversion of this bio-orthogonal coupling yielded circa 2000 dye or peptide molecules on a single FND. We demonstrate the superior properties of these particles by in vitro interaction with human prostate cancer cells: while bare nanodiamonds strongly aggregate in the buffer and adsorb onto the cell membrane, the shell encapsulated NDs do not adsorb nonspecifically and they penetrate inside the cells.
- Keywords
- biocompatibilization, fluorescent nanodiamonds, nanoparticles,
- MeSH
- Biocompatible Materials chemistry MeSH
- Electrons MeSH
- Fluorescent Dyes chemistry MeSH
- Microscopy, Confocal MeSH
- Humans MeSH
- Luminescence MeSH
- Cell Line, Tumor MeSH
- Nanodiamonds chemistry ultrastructure MeSH
- Silicon Dioxide chemistry MeSH
- Polyethylene Glycols chemistry MeSH
- Spectrophotometry, Infrared MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biocompatible Materials MeSH
- Fluorescent Dyes MeSH
- Nanodiamonds MeSH
- Silicon Dioxide MeSH
- Polyethylene Glycols MeSH
Nonfouling surfaces capable of reducing protein adsorption are highly desirable in a wide range of applications. Coating of surfaces with poly(ethylene oxide) (PEO), a water-soluble, nontoxic, and nonimmunogenic polymer, is most frequently used to reduce nonspecific protein adsorption. Here we show how to prepare dense PEO brushes on virtually any substrate by tethering PEO to polydopamine (PDA)-modified surfaces. The chain lengths of hetero-bifunctional PEOs were varied in the range of 45-500 oxyethylene units (M(n) = 2000-20,000). End-tethering of PEO chains was performed through amine and thiol headgroups from reactive polymer melts to minimize excluded volume effects. Surface plasmon resonance (SPR) was applied to investigate the adsorption of model protein solutions and complex biologic medium (human blood plasma) to the densely packed PEO brushes. The level of protein adsorption of human serum albumin and fibrinogen solutions was below the detection limit of the SPR measurements for all PEO chains end-tethered to PDA, thus exceeding the protein resistance of PEO layers tethered directly on gold. It was found that the surface resistance to adsorption of lysozyme and human blood plasma increased with increasing length and brush character of the PEO chains end-tethered to PDA with a similar or better resistance in comparison to PEO layers on gold. Furthermore, the chain density, thickness, swelling, and conformation of PEO layers were determined using spectroscopic ellipsometry (SE), dynamic water contact angle (DCA) measurements, infrared reflection-absorption spectroscopy (IRRAS), and vibrational sum-frequency-generation (VSFG) spectroscopy, the latter in air and water.
- MeSH
- Adsorption MeSH
- Biofouling prevention & control MeSH
- Indoles chemistry MeSH
- Humans MeSH
- Muramidase chemistry MeSH
- Polyethylene Glycols chemistry MeSH
- Polymers chemistry MeSH
- Serum Albumin chemistry MeSH
- Water chemistry MeSH
- Air MeSH
- Gold chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Indoles MeSH
- Muramidase MeSH
- polydopamine MeSH Browser
- Polyethylene Glycols MeSH
- Polymers MeSH
- Serum Albumin MeSH
- Water MeSH
- Gold MeSH