upconversion nanoparticles Dotaz Zobrazit nápovědu
Organic triplet-triplet annihilation upconversion (TTA-UC) nanoparticles have emerged as exciting therapeutic agents and imaging probes in recent years due to their unique chemical and optical properties such as outstanding biocompatibility and low power excitation density. In this review, we focus on the latest breakthroughs in such new version of upconversion nanoparticle, including their design, preparation, and applications. First, we will discuss the key principles and design concept of these organic-based photon upconversion in regard to the methods of selection of the related triplet TTA dye pairs (photosensitizer and emitter). Then, we will discuss the recent approaches s to construct TTA-UCNPs including silica TTA-UCNPs, lipid-coated TTA-UCNPs, polymer encapsulated TTA-UCNPs, nano-droplet TTA-UCNPs and metal-organic frameworks (MOFs) constructed TTA-UCNPs. In addition, the applications of TTA-UCNPs will be discussed. Finally, we will discuss the challenges posed by current TTA-UCNP development.
- Klíčová slova
- And cancer therapy, Bioimaging, Nanoparticles, Photo-targeting, Triplet-triplet annihilation upconversion,
- MeSH
- diagnostické zobrazování metody MeSH
- molekulární struktura MeSH
- nanočástice chemie MeSH
- oxid křemičitý chemie MeSH
- polymery chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- oxid křemičitý MeSH
- polymery MeSH
Surface engineering of upconverting nanoparticles (UCNPs) is crucial for their bioanalytical applications. Here, an antibody specific to cardiac troponin I (cTnI), an important biomarker for acute myocardial infection, was covalently immobilized on the surface of UCNPs to prepare a label for the detection of cTnI biomarker in an upconversion-linked immunoassay (ULISA). Core-shell UCNPs (NaYF4:Yb,Tm@NaYF4) were first coated with poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and then conjugated to antibodies. The morphology (size and uniformity), hydrodynamic diameter, chemical composition, and amount of coating on the of UCNPs, as well as their upconversion luminescence, colloidal stability, and leaching of Y3+ ions into the surrounding media, were determined. The developed ULISA allowed reaching a limit of detection (LOD) of 0.13 ng/ml and 0.25 ng/ml of cTnI in plasma and serum, respectively, which represents 12- and 2-fold improvement to conventional enzyme-linked immunosorbent based on the same immunoreagents.
- Klíčová slova
- Bioconjugation, Cardiac troponin I, Immunoassay, Photon-upconversion nanoparticle, Poly(methyl vinyl ether‐alt‐maleic acid), Upconversion-linked immunosorbent assay,
- MeSH
- imunoanalýza metody MeSH
- limita detekce MeSH
- luminiscence MeSH
- nanočástice * chemie MeSH
- troponin I analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- troponin I MeSH
NaYF4:Yb(3+)/Er(3+) nanoparticles were synthesized by thermal decomposition of lanthanide trifluoroacetates using oleylamine (OM) as both solvent and surface binding ligand. The effect of reaction temperature and time on the properties of the particles was investigated. The nanoparticles were characterized by transmission electron microscopy (TEM), electron diffraction (ED), energy dispersive spectroscopy (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), elemental analysis and X-ray diffraction (XRD) to determine morphology, size, polydispersity, crystal structure and elemental composition of the nanocrystals. TEM microscopy revealed that the morphology of the nanoparticles could be fine-tuned by modifying of the synthetic conditions. A cubic-to-hexagonal phase transition of the NaYF4:Yb(3+)/Er(3+) nanoparticles at temperatures above 300 °C was confirmed by both ED and XRD. Upconversion luminescence under excitation at 980 nm was observed in the luminescence spectra of OM-NaYF4:Yb(3+)/Er(3+) nanoparticles. Finally, the OM-NaYF4:Yb(3+)/Er(3+) nanoparticles were coated with a silica shell to enable further functionalization and increase biocompatibility and stability in aqueous media, preventing particle aggregation.
- Klíčová slova
- lanthanide, nanoparticles, oleylamine, silica, upconversion,
- Publikační typ
- časopisecké články MeSH
Immunohistochemistry (IHC) and immunocytochemistry (ICC) are widely used to identify cancerous cells within tissues and cell cultures. Even though the optical microscopy evaluation is considered the gold standard, the limited range of useful labels and narrow multiplexing capabilities create an imminent need for alternative readout techniques. Laser-induced breakdown spectroscopy (LIBS) enables large-scale multi-elemental analysis of the surface of biological samples, e.g., thin section or cell pellet. It is, therefore, a potential alternative for IHC and ICC readout of various labels or tags (Tag-LIBS approach). Here, we introduce Tag-LIBS as a method for the specific determination of HER2 biomarker. The cell pellets were labeled with streptavidin-conjugated upconversion nanoparticles (UCNP) through a primary anti-HER2 antibody and a biotinylated secondary antibody. The LIBS scanning enabled detecting the characteristic elemental signature of yttrium as a principal constituent of UCNP, thus indirectly providing a reliable way to differentiate between HER2-positive BT-474 cells and HER2-negative MDA-MB-231 cells. The comparison of results with upconversion optical microscopy and luminescence intensity scanning confirmed that LIBS is a promising alternative for the IHC and ICC readout.
- Klíčová slova
- Immunocytochemistry, Immunohistochemistry, Laser-induced breakdown spectroscopy, Photon-upconversion nanoparticles, Tag-LIBS,
- MeSH
- fluoridy chemie účinky záření MeSH
- imobilizační protilátky imunologie MeSH
- imunohistochemie metody MeSH
- lidé MeSH
- nádorové biomarkery analýza imunologie MeSH
- nádorové buněčné linie MeSH
- nanočástice chemie účinky záření MeSH
- receptor erbB-2 analýza imunologie MeSH
- spektrální analýza metody MeSH
- studie proveditelnosti MeSH
- světlo MeSH
- thulium chemie účinky záření MeSH
- ytrium chemie účinky záření MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ERBB2 protein, human MeSH Prohlížeč
- fluoridy MeSH
- imobilizační protilátky MeSH
- nádorové biomarkery MeSH
- receptor erbB-2 MeSH
- sodium yttriumtetrafluoride MeSH Prohlížeč
- thulium MeSH
- ytrium MeSH
Starting NaYF4:Yb(3+)/Er(3+) nanoparticles with size tuned from 24 to 33 nm were prepared by high-temperature coprecipitation of lanthanide chlorides in high-boiling organic solvents. To enhance colloidal stability in aqueous medium, an aminosilica shell was introduced on the surface by hydrolysis and condensation of tetramethyl orthosilicate and (3-aminopropyl)trimethoxysilane using a reverse microemulsion technique; to form alkyne groups, reaction with 4-pentynoic acid followed. Finally, the cell adhesive and cell penetrating azidopentanoyl-GGGRGDSGGGY-NH2 (RGDS) and azidopentanoyl-GGGRKKRRQRRR-NH2 (TAT) peptides were conjugated to the upconversion particles via Cu(I)-catalyzed alkyne-azide cycloaddition. The concentrations of the peptides bound to the nanoparticle surfaces and amount of adsorbed residual Cu(I) catalyst were determined using an (125)I-radiolabeled RGDS peptide and a (64)Cu(I)-doped catalyst, respectively. Targeting and uptake of the RGDS- and TAT-conjugated NaYF4:Yb(3+)/Er(3+)&SiO2 nanoparticles by human cervix carcinoma HeLa cells were monitored by confocal microscopy. RGDS-conjugated nanoparticle probes were mainly localized on the cell plasma membrane due to specific binding of the peptide to the corresponding integrins. In contrast, the TAT-conjugated nanoparticles were able to cross the cell membrane and accumulate in the cell cytoplasm. Thus, this new peptide bioconjugation approach supported both extra- and intracellular nanoparticle uptake, enabling targeting and imaging of the specific tumor phenotypes.
- Klíčová slova
- HeLa cells, RGDS peptide, TAT peptide, nanoparticles, upconversion,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Laser-induced breakdown spectroscopy (LIBS) is a well-recognized analytical technique used for elemental analysis. This method is gaining considerable attention also in biological applications thanks to its ability for spatial mapping and elemental imaging. The implementation of LIBS in the biomedical field is based on the detection of metals or other elements that either naturally occur in the samples or are present artificially. The artificial implementation of nanoparticle labels (Tag-LIBS) enables the use of LIBS as a readout technique for immunochemical assays. However, one of the biggest challenges for LIBS to meet immunoassay readout standards is its sensitivity. RESULTS: This paper focuses on the improvement of LIBS sensitivity for the readout of nanoparticle-based immunoassays. First, the LIBS setup was optimized on photon-upconversion nanoparticle (UCNP) droplets deposited on the microtiter plate wells. Two collection optics systems were compared, with single pulse (SP) and collinear double pulse (DP) LIBS arrangements. By deploying the second laser pulse, the sensitivity was improved up to 30 times. The optimized SP and DP setups were then employed for the indirect detection of human serum albumin based on immunoassay with UCNP-based labels. Compared to our previous LIBS study, the detection limit was enhanced by two orders of magnitude, from 10 ng mL-1 to 0.29 ng mL-1. In addition, two other immunochemical methods were used for reference, based on the readout of upconversion luminescence of UCNPs and absorbance measurement with enzyme labels. Finally, the selectivity of the assay was tested and the practical potential of Tag-LIBS was demonstrated by the successful analysis of urine samples. SIGNIFICANCE AND NOVELTY: In this work, we improved the sensitivity of the Tag-LIBS method by combining new labels based on UCNPs with the improved collection optics and collinear DP configuration. In the instrumental setup optimization, the DP LIBS showed better sensitivity and signal-to-noise ratio than SP. The optimizations allowed the LIBS readout to surpass the sensitivity of enzyme immunoassay, approaching the qualities of upconversion luminescence readout, which is nowadays a state-of-the-art readout technique.
- Klíčová slova
- Double pulse, Human serum albumin, Immunoassay, Laser-induced breakdown spectroscopy, Photon-upconversion nanoparticle, Tag-LIBS,
- MeSH
- imunoanalýza metody MeSH
- kovy MeSH
- lasery MeSH
- lidé MeSH
- nanočástice * chemie MeSH
- spektrální analýza metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kovy MeSH
Lanthanide-doped upconversion nanoparticles (UCNPs) display highly beneficial photophysical features for background-free bioimaging and bioanalysis; however, they are instable in high ionic strength buffers, have no functional groups, and are nonspecifically interacting. Here, we have prepared NIR-excitable UCNPs that are long-term colloidally stable in buffered media and possess functional groups. Heterobifunctional poly(ethylene glycol) (PEG) linkers bearing neridronate and alkyne or maleimide were attached to UCNPs via a ligand exchange. Streptavidin (SA)-conjugates were prepared by click reaction of UCNP@PEG-alkyne and SA-azide. Antihuman serum albumin pAbF antibody was modified with azide groups and conjugated to UCNP@PEG-alkyne via click reaction; alternatively, the antibody, after mild reduction of its disulfide bonds, was conjugated to UCNP@PEG-maleimide. We employed these nanoconjugates as labels for an upconversion-linked immunosorbent assay. SA-based labels achieved the lowest LOD of 0.17 ng/mL for the target albumin, which was superior compared to a fluorescence immunoassay (LOD 0.59 ng/mL) or an enzyme-linked immunoassay (LOD 0.56 ng/mL).
- MeSH
- nanočástice * MeSH
- polyethylenglykoly MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- polyethylenglykoly MeSH
The performance of photon-upconversion nanoparticles (UCNPs) as background-free luminescent labels in bioanalytical applications strongly depends on the preparation of well-defined and water-dispersible nanoconjugates. We have exploited the separation power of agarose-gel electrophoresis to purify milligram amounts of homogeneous UCNPs covered with carboxylated silica, biotin, or streptavidin with recovery rates of 30 to 50%. Clusters containing discrete numbers of UCNPs were isolated from the gel and reanalyzed by agarose-gel electrophoresis, single-nanoparticle-upconversion microscopy, and additional complementary methods. The purified nanoconjugates improved conventional (analogue) bioaffinity assays and provided highly monodisperse conjugates for assays that rely on counting individual UCNPs (digital assays).
- MeSH
- biotin chemie MeSH
- elektroforéza v agarovém gelu metody MeSH
- europium chemie MeSH
- infračervené záření MeSH
- kovové nanočástice chemie účinky záření MeSH
- luminiscenční látky chemie izolace a purifikace účinky záření MeSH
- oxid křemičitý chemie MeSH
- streptavidin chemie MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biotin MeSH
- europium MeSH
- luminiscenční látky MeSH
- oxid křemičitý MeSH
- streptavidin MeSH
Upconverting nanoparticles are interesting materials that have the potential for use in many applications ranging from solar energy harvesting to biosensing, light-triggered drug delivery, and photodynamic therapy (PDT). One of the main requirements for the particles is their surface modification, in our case using poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and temoporfin (THPC) photosensitizer to ensure the colloidal and chemical stability of the particles in aqueous media and the formation of singlet oxygen after NIR irradiation, respectively. Codoping of Fe2+, Yb3+, and Er3+ ions in the NaYF4 host induced upconversion emission of particles in the red region, which is dominant for achieving direct excitation of THPC. Novel monodisperse PMVEMA-coated upconversion NaYF4:Yb3+,Er3+,Fe2+ nanoparticles (UCNPs) with chemically bonded THPC were found to efficiently transfer energy and generate singlet oxygen. The cytotoxicity of the UCNPs was determined in the human pancreatic adenocarcinoma cell lines Capan-2, PANC-01, and PA-TU-8902. In vitro data demonstrated enhanced uptake of UCNP@PMVEMA-THPC particles by rat INS-1E insulinoma cells, followed by significant cell destruction after excitation with a 980 nm laser. Intratumoral administration of these nanoconjugates into a mouse model of human pancreatic adenocarcinoma caused extensive necrosis at the tumor site, followed by tumor suppression after NIR-induced PDT. In vitro and in vivo results thus suggest that this nanoconjugate is a promising candidate for NIR-induced PDT of cancer.
- Klíčová slova
- pancreatic tumor, photodynamic therapy, temoporfin, upconversion,
- Publikační typ
- časopisecké články MeSH
The detection of cancer biomarkers in histological samples and blood is of paramount importance for clinical diagnosis. Current methods are limited in terms of sensitivity, hindering early detection of disease. We have overcome the shortcomings of currently available staining and fluorescence labeling methods by taking an integrative approach to establish photon-upconversion nanoparticles (UCNP) as a powerful platform for cancer detection. These nanoparticles are readily synthesized in different sizes to yield efficient and tunable short-wavelength light emission under near-infrared excitation, which eliminates optical background interference of the specimen. Here we present a protocol for the synthesis of UCNPs by high-temperature co-precipitation or seed-mediated growth by thermal decomposition, surface modification by silica or poly(ethylene glycol) that renders the particles resistant to nonspecific binding, and the conjugation of streptavidin or antibodies for biological detection. To detect blood-based biomarkers, we present an upconversion-linked immunosorbent assay for the analog and digital detection of the cancer marker prostate-specific antigen. When applied to immunocytochemistry analysis, UCNPs enable the detection of the breast cancer marker human epidermal growth factor receptor 2 with a signal-to-background ratio 50-fold higher than conventional fluorescent labels. UCNP synthesis takes 4.5 d, the preparation of the antibody-silica-UCNP conjugate takes 3 d, the streptavidin-poly(ethylene glycol)-UCNP conjugate takes 2-3 weeks, upconversion-linked immunosorbent assay takes 2-4 d and immunocytochemistry takes 8-10 h. The procedures can be performed after standard laboratory training in nanomaterials research.
- MeSH
- imunosorbenty MeSH
- lidé MeSH
- nádorové biomarkery MeSH
- nádory * diagnóza MeSH
- nanočástice * chemie MeSH
- oxid křemičitý chemie MeSH
- polyethylenglykoly chemie MeSH
- streptavidin MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- imunosorbenty MeSH
- nádorové biomarkery MeSH
- oxid křemičitý MeSH
- polyethylenglykoly MeSH
- streptavidin MeSH