Nejvíce citovaný článek - PubMed ID 23057437
Biogeographical patterns and determinants of invasion by forest pathogens in Europe
Phytophthora cinnamomi stands out as one of the most devastating plant pathogens worldwide, rapidly expanding its range and impacting a wide range of host species. In this study, we investigated the virome of P. cinnamomi across 222 isolates from Africa, Asia, Europe, Oceania, and the Americas using stranded total RNA sequencing, reverse transcription polymerase chain reaction screening, and Sanger sequencing of selected isolates. Our analysis revealed that virus infections were prevalent across all sampled populations, including RNA viruses associated with the orders Ghabrivirales, Martellivirales, and Tolivirales, and the classes Amabiliviricetes, Bunyaviricetes, and the recently proposed Orpoviricetes. Viruses were mainly found in East and Southeast Asian populations, within the geographic origin of P. cinnamomi but have also spread to new regions where the pathogen has emerged as a clonal destructive pathogen. Among the identified viruses, eight species, including two bunya-like viruses, one narna-like virus, and five ormycoviruses, exhibit a global distribution with some genetic divergence between continents. The interaction between P. cinnamomi and its virome indicates a dynamic coevolution across diverse geographic regions. Indonesia is indicated to be the viral epicentre of P. cinnamomi, with the highest intra- and interspecies diversity of viruses. Viral diversity is significantly enhanced in regions where sexual recombination of P. cinnamomi occurs, while regions with predominantly asexual reproduction harbour fewer viral species. Interestingly, only the partially self-fertile mating type (MAT) A2, associated with the global pandemic, facilitates the spread of viruses across different biogeographic regions, whereas viruses are absent in the self-sterile MAT A1 in its areas of introduction like Australia and South Africa. Intriguingly, the presence of a plant tombusvirus suggests a potential cross-kingdom infection among Chilean isolates and a plant host. This study sheds further light on the geographical origin of P. cinnamomi from a novel virome perspective.
- Klíčová slova
- HTS orphan contigs, forest emerging diseases, mating, oomycetes, virus diversity, virus evolution, virus–host coevolution,
- Publikační typ
- časopisecké články MeSH
During 25 surveys of global Phytophthora diversity, conducted between 1998 and 2020, 43 new species were detected in natural ecosystems and, occasionally, in nurseries and outplantings in Europe, Southeast and East Asia and the Americas. Based on a multigene phylogeny of nine nuclear and four mitochondrial gene regions they were assigned to five of the six known subclades, 2a-c, e and f, of Phytophthora major Clade 2 and the new subclade 2g. The evolutionary history of the Clade appears to have involved the pre-Gondwanan divergence of three extant subclades, 2c, 2e and 2f, all having disjunct natural distributions on separate continents and comprising species with a soilborne and aquatic lifestyle and, in addition, a few partially aerial species in Clade 2c; and the post-Gondwanan evolution of subclades 2a and 2g in Southeast/East Asia and 2b in South America, respectively, from their common ancestor. Species in Clade 2g are soilborne whereas Clade 2b comprises both soil-inhabiting and aerial species. Clade 2a has evolved further towards an aerial lifestyle comprising only species which are predominantly or partially airborne. Based on high nuclear heterozygosity levels ca. 38 % of the taxa in Clades 2a and 2b could be some form of hybrid, and the hybridity may be favoured by an A1/A2 breeding system and an aerial life style. Circumstantial evidence suggests the now 93 described species and informally designated taxa in Clade 2 result from both allopatric non-adaptive and sympatric adaptive radiations. They represent most morphological and physiological characters, breeding systems, lifestyles and forms of host specialism found across the Phytophthora clades as a whole, demonstrating the strong biological cohesiveness of the genus. The finding of 43 previously unknown species from a single Phytophthora clade highlight a critical lack of information on the scale of the unknown pathogen threats to forests and natural ecosystems, underlining the risk of basing plant biosecurity protocols mainly on lists of named organisms. More surveys in natural ecosystems of yet unsurveyed regions in Africa, Asia, Central and South America are needed to unveil the full diversity of the clade and the factors driving diversity, speciation and adaptation in Phytophthora. Taxonomic novelties: New species: Phytophthora amamensis T. Jung, K. Kageyama, H. Masuya & S. Uematsu, Phytophthora angustata T. Jung, L. Garcia, B. Mendieta-Araica, & Y. Balci, Phytophthora balkanensis I. Milenković, Ž. Tomić, T. Jung & M. Horta Jung, Phytophthora borneensis T. Jung, A. Durán, M. Tarigan & M. Horta Jung, Phytophthora calidophila T. Jung, Y. Balci, L. Garcia & B. Mendieta-Araica, Phytophthora catenulata T. Jung, T.-T. Chang, N.M. Chi & M. Horta Jung, Phytophthora celeris T. Jung, L. Oliveira, M. Tarigan & I. Milenković, Phytophthora curvata T. Jung, A. Hieno, H. Masuya & M. Horta Jung, Phytophthora distorta T. Jung, A. Durán, E. Sanfuentes von Stowasser & M. Horta Jung, Phytophthora excentrica T. Jung, S. Uematsu, K. Kageyama & C.M. Brasier, Phytophthora falcata T. Jung, K. Kageyama, S. Uematsu & M. Horta Jung, Phytophthora fansipanensis T. Jung, N.M. Chi, T. Corcobado & C.M. Brasier, Phytophthora frigidophila T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora furcata T. Jung, N.M. Chi, I. Milenković & M. Horta Jung, Phytophthora inclinata N.M. Chi, T. Jung, M. Horta Jung & I. Milenković, Phytophthora indonesiensis T. Jung, M. Tarigan, L. Oliveira & I. Milenković, Phytophthora japonensis T. Jung, A. Hieno, H. Masuya & J.F. Webber, Phytophthora limosa T. Corcobado, T. Majek, M. Ferreira & T. Jung, Phytophthora macroglobulosa H.-C. Zeng, H.-H. Ho, F.-C. Zheng & T. Jung, Phytophthora montana T. Jung, Y. Balci, K. Broders & M. Horta Jung, Phytophthora multipapillata T. Jung, M. Tarigan, I. Milenković & M. Horta Jung, Phytophthora multiplex T. Jung, Y. Balci, K. Broders & M. Horta Jung, Phytophthora nimia T. Jung, H. Masuya, A. Hieno & C.M. Brasier, Phytophthora oblonga T. Jung, S. Uematsu, K. Kageyama & C.M. Brasier, Phytophthora obovoidea T. Jung, Y. Balci, L. Garcia & B. Mendieta-Araica, Phytophthora obturata T. Jung, N.M. Chi, I. Milenković & M. Horta Jung, Phytophthora penetrans T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora platani T. Jung, A. Pérez-Sierra, S.O. Cacciola & M. Horta Jung, Phytophthora proliferata T. Jung, N.M. Chi, I. Milenković & M. Horta Jung, Phytophthora pseudocapensis T. Jung, T.-T. Chang, I. Milenković & M. Horta Jung, Phytophthora pseudocitrophthora T. Jung, S.O. Cacciola, J. Bakonyi & M. Horta Jung, Phytophthora pseudofrigida T. Jung, A. Durán, M. Tarigan & M. Horta Jung, Phytophthora pseudoccultans T. Jung, T.-T. Chang, I. Milenković & M. Horta Jung, Phytophthora pyriformis T. Jung, Y. Balci, K.D. Boders & M. Horta Jung, Phytophthora sumatera T. Jung, M. Tarigan, M. Junaid & A. Durán, Phytophthora transposita T. Jung, K. Kageyama, C.M. Brasier & H. Masuya, Phytophthora vacuola T. Jung, H. Masuya, K. Kageyama & J.F. Webber, Phytophthora valdiviana T. Jung, E. Sanfuentes von Stowasser, A. Durán & M. Horta Jung, Phytophthora variepedicellata T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora vietnamensis T. Jung, N.M. Chi, I. Milenković & M. Horta Jung, Phytophthora ×australasiatica T. Jung, N.M. Chi, M. Tarigan & M. Horta Jung, Phytophthora ×lusitanica T. Jung, M. Horta Jung, C. Maia & I. Milenković, Phytophthora ×taiwanensis T. Jung, T.-T. Chang, H.-S. Fu & M. Horta Jung. Citation: Jung T, Milenković I, Balci Y, Janoušek J, Kudláček T, Nagy ZÁ, Baharuddin B, Bakonyi J, Broders KD, Cacciola SO, Chang T-T, Chi NM, Corcobado T, Cravador A, Đorđević B, Durán A, Ferreira M, Fu C-H, Garcia L, Hieno A, Ho H-H, Hong C, Junaid M, Kageyama K, Kuswinanti T, Maia C, Májek T, Masuya H, Magnano di San Lio G, Mendieta-Araica B, Nasri N, Oliveira LSS, Pane A, Pérez-Sierra A, Rosmana A, Sanfuentes von Stowasser E, Scanu B, Singh R, Stanivuković Z, Tarigan M, Thu PQ, Tomić Z, Tomšovský M, Uematsu S, Webber JF, Zeng H-C, Zheng F-C, Brasier CM, Horta Jung M (2024). Worldwide forest surveys reveal forty-three new species in Phytophthora major Clade 2 with fundamental implications for the evolution and biogeography of the genus and global plant biosecurity. Studies in Mycology 107: 251-388. doi: 10.3114/sim.2024.107.04.
- Klíčová slova
- Gondwana, Laurasia, allopatric speciation, biodiversity, breeding systems, lifestyle, new taxa, phylogeny, sympatric species radiation,
- Publikační typ
- časopisecké články MeSH
Climate shapes the distribution of plant-associated microbes such as mycorrhizal and endophytic fungi. However, the role of climate in plant pathogen community assembly is less understood. Here, we explored the role of climate in the assembly of Phytophthora communities at >250 sites along a latitudinal gradient from Spain to northern Sweden and an altitudinal gradient from the Spanish Pyrenees to lowland areas. Communities were detected by ITS sequencing of river filtrates. Mediation analysis supported the role of climate in the biogeography of Phytophthora and ruled out other environmental factors such as geography or tree diversity. Comparisons of functional and species diversity showed that environmental filtering dominated over competitive exclusion in Europe. Temperature and precipitation acted as environmental filters at different extremes of the gradients. In northern regions, winter temperatures acted as an environmental filter on Phytophthora community assembly, selecting species adapted to survive low minimum temperatures. In southern latitudes, a hot dry climate was the main environmental filter, resulting in communities dominated by drought-tolerant Phytophthora species with thick oospore walls, a high optimum temperature for growth, and a high maximum temperature limit for growth. By taking a community ecology approach, we show that the establishment of Phytophthora plant pathogens in Europe is mainly restricted by cold temperatures.
- Klíčová slova
- Phytophthora, climate change, competitive exclusion, drought, forest pathogen, functional diversity, functional traits, oomycete, species distribution model, temperature,
- MeSH
- klimatické změny MeSH
- podnebí * MeSH
- roční období MeSH
- rostliny * MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
The international plant trade results in the accidental movement of invasive pests and pathogens, and has contributed significantly to recent range expansion of pathogens including Dothistroma septosporum. Seeds are usually thought to present a lower biosecurity risk than plants, but the importation of Pinus contorta seeds from North America to Britain in the mid-1900s, and similarities between British and Canadian D. septosporum populations suggests seeds could be a pathway. Dothistroma septosporum has not been isolated from seeds, but inadequately cleaned seed material could contain infected needle fragments. This case study investigated whether cone kilning, and wet and dry heat treatments could reduce D. septosporum transmission without damaging seed viability. Pinus needles infected with D. septosporum were incubated alongside cones undergoing three commercial seed extraction processes. Additional needles were exposed to temperatures ranging from 10 to 67 °C dry heat for up to 48 h, or incubated in water heated to between 20 and 60 °C for up to one hour. Pinus sylvestris seeds were exposed to 60 and 65 dry heat °C for 48 h, and further seed samples incubated in water heated to between 20 and 60 °C for up to one hour. Dothistroma septosporum survived the three kilning processes and while seeds were not damaged by dry heat exceeding 63.5 °C, at this temperature no D. septosporum survived. Wet heat treatments resulted in less than 10% pathogen survival following incubation at 40 °C, while at this temperature the seeds suffered no significant impacts, even when submerged for one hour. Thus, commercial seed kilning could allow D. septosporum transmission, but elevated wet and dry heat treatments could be applied to seed stock to minimise pathogen risk without significantly damaging seed viability.
- Klíčová slova
- Dothistroma needle blight, biosecurity, invasive forest pathogens, phytosanitary, plant disease, seed quality,
- Publikační typ
- časopisecké články MeSH
Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate.
- MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- hmyz MeSH
- klimatické změny MeSH
- lesy MeSH
- lidé MeSH
- mykobiom * MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
European forests are threatened by increasing numbers of invasive pests and pathogens. Over the past century, Lecanosticta acicola, a foliar pathogen predominantly of Pinus spp., has expanded its range globally, and is increasing in impact. Lecanosticta acicola causes brown spot needle blight, resulting in premature defoliation, reduced growth, and mortality in some hosts. Originating from southern regions of North American, it devastated forests in the USA's southern states in the early twentieth century, and in 1942 was discovered in Spain. Derived from Euphresco project 'Brownspotrisk,' this study aimed to establish the current distribution of Lecanosticta species, and assess the risks of L. acicola to European forests. Pathogen reports from the literature, and new/ unpublished survey data were combined into an open-access geo-database (http://www.portalofforestpathology.com), and used to visualise the pathogen's range, infer its climatic tolerance, and update its host range. Lecanosticta species have now been recorded in 44 countries, mostly in the northern hemisphere. The type species, L. acicola, has increased its range in recent years, and is present in 24 out of the 26 European countries where data were available. Other species of Lecanosticta are largely restricted to Mexico and Central America, and recently Colombia. The geo-database records demonstrate that L. acicola tolerates a wide range of climates across the northern hemisphere, and indicate its potential to colonise Pinus spp. forests across large swathes of the Europe. Preliminary analyses suggest L. acicola could affect 62% of global Pinus species area by the end of this century, under climate change predictions. Although its host range appears slightly narrower than the similar Dothistroma species, Lecanosticta species were recorded on 70 host taxa, mostly Pinus spp., but including, Cedrus and Picea spp. Twenty-three, including species of critical ecological, environmental and economic significance in Europe, are highly susceptible to L. acicola, suffering heavy defoliation and sometimes mortality. Variation in apparent susceptibility between reports could reflect variation between regions in the hosts' genetic make-up, but could also reflect the significant variation in L. acicola populations and lineages found across Europe. This study served to highlight significant gaps in our understanding of the pathogen's behaviour. Lecanosticta acicola has recently been downgraded from an A1 quarantine pest to a regulated non quarantine pathogen, and is now widely distributed across Europe. With a need to consider disease management, this study also explored global BSNB strategies, and used Case Studies to summarise the tactics employed to date in Europe.
- Klíčová slova
- Brown spot needle blight, Climate change, Emerging and invasive pathogens, Forest conservation, Forest health protection, Forest management, Mycosphaerella dearnessii, Pinus,
- Publikační typ
- časopisecké články MeSH
Invasive, exotic plant pathogens pose a major threat to native and agricultural ecosystems. Phytophthora × cambivora is an invasive, destructive pathogen of forest and fruit trees causing severe damage worldwide to chestnuts (Castanea), apricots, peaches, plums, almonds and cherries (Prunus), apples (Malus), oaks (Quercus), and beech (Fagus). It was one of the first damaging invasive Phytophthora species to be introduced to Europe and North America, although its origin is unknown. We determined its population genetic history in Europe, North and South America, Australia and East Asia (mainly Japan) using genotyping-by-sequencing. Populations in Europe and Australia appear clonal, those in North America are highly clonal yet show some degree of sexual reproduction, and those in East Asia are partially sexual. Two clonal lineages, each of opposite mating type, and a hybrid lineage derived from these two lineages, dominated the populations in Europe and were predominantly found on fagaceous forest hosts (Castanea, Quercus, Fagus). Isolates from fruit trees (Prunus and Malus) belonged to a separate lineage found in Australia, North America, Europe and East Asia, indicating the disease on fruit trees could be caused by a distinct lineage of P. × cambivora, which may potentially be a separate sister species and has likely been moved with live plants. The highest genetic diversity was found in Japan, suggesting that East Asia is the centre of origin of the pathogen. Further surveys in unsampled, temperate regions of East Asia are needed to more precisely identify the location and range of the centre of diversity.
- Klíčová slova
- Hybridization, Invasive pathogen, Polyploidy, Population genetics,
- Publikační typ
- časopisecké články MeSH
We explored the virome of the "Phytophthora palustris complex", a group of aquatic specialists geographically limited to Southeast and East Asia, the native origin of many destructive invasive forest Phytophthora spp. Based on high-throughput sequencing (RNAseq) of 112 isolates of "P. palustris" collected from rivers, mangroves, and ponds, and natural forests in subtropical and tropical areas in Indonesia, Taiwan, and Japan, 52 putative viruses were identified, which, to varying degrees, were phylogenetically related to the families Botybirnaviridae, Narnaviridae, Tombusviridae, and Totiviridae, and the order Bunyavirales. The prevalence of all viruses in their hosts was investigated and confirmed by RT-PCR. The rich virus composition, high abundance, and distribution discovered in our study indicate that viruses are naturally infecting taxa from the "P. palustris complex" in their natural niche, and that they are predominant members of the host cellular environment. Certain Indonesian localities are the viruses' hotspots and particular "P. palustris" isolates show complex multiviral infections. This study defines the first bi-segmented bunya-like virus together with the first tombus-like and botybirna-like viruses in the genus Phytophthora and provides insights into the spread and evolution of RNA viruses in the natural populations of an oomycete species.
- Klíčová slova
- Phytophthora, RNA-sequencing, multiple viral infections, mycovirus, natural habitat, oomycetes, virus ecology, virus evolution, virus reservoirs,
- Publikační typ
- časopisecké články MeSH
International trade in plants and climate change are two of the main factors causing damaging tree pests (i.e. fungi and insects) to spread into new areas. To mitigate these risks, a large-scale assessment of tree-associated fungi and insects is needed. We present records of endophytic fungi and insects in twigs of 17 angiosperm and gymnosperm genera, from 51 locations in 32 countries worldwide. Endophytic fungi were characterized by high-throughput sequencing of 352 samples from 145 tree species in 28 countries. Insects were reared from 227 samples of 109 tree species in 18 countries and sorted into taxonomic orders and feeding guilds. Herbivorous insects were grouped into morphospecies and were identified using molecular and morphological approaches. This dataset reveals the diversity of tree-associated taxa, as it contains 12,721 fungal Amplicon Sequence Variants and 208 herbivorous insect morphospecies, sampled across broad geographic and climatic gradients and for many tree species. This dataset will facilitate applied and fundamental studies on the distribution of fungal endophytes and insects in trees.
- MeSH
- biodiverzita MeSH
- endofyty * MeSH
- hmyz * MeSH
- houby * MeSH
- stromy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- práce podpořená grantem MeSH
The genus Phytophthora comprises many economically and ecologically important plant pathogens. Hybrid species have previously been identified in at least six of the 12 phylogenetic clades. These hybrids can potentially infect a wider host range and display enhanced vigour compared to their progenitors. Phytophthora hybrids therefore pose a serious threat to agriculture as well as to natural ecosystems. Early and correct identification of hybrids is therefore essential for adequate plant protection but this is hampered by the limitations of morphological and traditional molecular methods. Identification of hybrids is also important in evolutionary studies as the positioning of hybrids in a phylogenetic tree can lead to suboptimal topologies. To improve the identification of hybrids we have combined genotyping-by-sequencing (GBS) and genome size estimation on a genus-wide collection of 614 Phytophthora isolates. Analyses based on locus- and allele counts and especially on the combination of species-specific loci and genome size estimations allowed us to confirm and characterize 27 previously described hybrid species and discover 16 new hybrid species. Our method was also valuable for species identification at an unprecedented resolution and further allowed correct naming of misidentified isolates. We used both a concatenation- and a coalescent-based phylogenomic method to construct a reliable phylogeny using the GBS data of 140 non-hybrid Phytophthora isolates. Hybrid species were subsequently connected to their progenitors in this phylogenetic tree. In this study we demonstrate the application of two validated techniques (GBS and flow cytometry) for relatively low cost but high resolution identification of hybrids and their phylogenetic relations.
- Klíčová slova
- Flow cytometry, GBS, Hybrid, Oomycete, Phylogeny, Polyploidy,
- Publikační typ
- časopisecké články MeSH