Most cited article - PubMed ID 23297261
Matrix-assisted laser desorption ionization-time of flight (maldi-tof) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis
The resistance to carbapenems is usually mediated by enzymes hydrolyzing β-lactam ring. Recently, an alternative way of the modification of the antibiotic, a β-lactone formation by OXA-48-like enzymes, in some carbapenems was identified. We focused our study on a deep analysis of OXA-48-like-producing Enterobacterales, especially strains showing poor hydrolytic activity. In this study, well characterized 74 isolates of Enterobacterales resistant to carbapenems were used. Carbapenemase activity was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), liquid chromatography/mass spectrometry (LC-MS), Carba-NP test and modified Carbapenem Inactivation Method (mCIM). As meropenem-derived β-lactone possesses the same molecular weight as native meropenem (MW 383.46 g/mol), β-lactonization cannot be directly detected by MALDI-TOF MS. In the spectra, however, the peaks of m/z = 340.5 and 362.5 representing decarboxylated β-lactone and its sodium adduct were detected in 25 out of 35 OXA-48-like producers. In the rest 10 isolates, decarboxylated hydrolytic product (m/z = 358.5) and its sodium adduct (m/z = 380.5) have been detected. The peak of m/z = 362.5 was detected in 3 strains co-producing OXA-48-like and NDM-1 carbapenemases. The respective signal was identified in no strain producing class A or class B carbapenemase alone showing its specificity for OXA-48-like carbapenemases. Using LC-MS, we were able to identify meropenem-derived β-lactone directly according to the different retention time. All strains with a predominant β-lactone production showed negative results of Carba NP test. In this study, we have demonstrated that the strains producing OXA-48-like carbapenemases showing false-negative results using Carba NP test and MALDI-TOF MS preferentially produced meropenem-derived β-lactone. We also identified β-lactone-specific peak in MALDI-TOF MS spectra and demonstrated the ability of LC-MS to detect meropenem-derived β-lactone.
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Bacterial Proteins * analysis MeSH
- beta-Lactamases analysis MeSH
- Enterobacteriaceae * MeSH
- Carbapenems pharmacology MeSH
- Meropenem pharmacology MeSH
- Microbial Sensitivity Tests MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Bacterial Proteins * MeSH
- beta-Lactamases MeSH
- carbapenemase MeSH Browser
- Carbapenems MeSH
- Meropenem MeSH
In the last two decades, microbiology laboratories have radically changed by the introduction of novel technologies, like Next-Generation Sequencing (NGS) and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Nevertheless, emergence of antibiotic-resistant microorganisms represents a global threat of current medicine, being responsible for increasing mortality and health-care direct and indirect costs. In addition, the identification of antibiotic-resistant microorganisms, like OXA-48 carbapenemase-producing Enterobacteriaceae, has been changeling for clinical microbiology laboratories. Even the cost of NGS technology and MALDI-TOF MS equipment is relatively high, both technologies are increasingly used in diagnostic and research protocols. Therefore, the aim of this review is to present applications of these technologies used in clinical microbiology, especially in detection of antibiotic resistance and its surveillance, and to propose a combinatory approach of MALDI-TOF MS and NGS for the investigation of microbial associated infections.
- Keywords
- MLST, NGS, beta-lactamase, carbapenemase, susceptibility testing,
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Bacteria classification drug effects genetics isolation & purification MeSH
- Bacterial Infections diagnosis microbiology MeSH
- Drug Resistance, Bacterial * MeSH
- Mass Spectrometry methods MeSH
- Laboratories, Hospital MeSH
- Humans MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) -based identification of bacteria and fungi significantly changed the diagnostic process in clinical microbiology. We describe here a novel technique for bacterial and yeast deposition on MALDI target using an automated workflow resulting in an increase of the microbes' score of MALDI identification. We also provide a comparison of four different sample preparation methods. In the first step of the study, 100 Gram-negative bacteria, 100 Gram-positive bacteria, 20 anaerobic bacteria and 20 yeasts were spotted on the MALDI target using manual deposition, semi-extraction, wet deposition onto 70% formic acid and by automatic deposition using MALDI Colonyst. The lowest scores were obtained by manual toothpick spotting which significantly differ from other methods. Identification score of semi-extraction, wet deposition and automatic wet deposition did not significantly differ using calculated relative standard deviation (RSD). Nevertheless, the best results with low error rate have been observed using MALDI Colonyst robot. The second step of validation included processing of 542 clinical isolates in routine microbiological laboratory by a toothpick direct spotting, on-plate formic acid extraction (for yeasts) and automatic deposition using MALDI Colonyst. Validation in routine laboratory process showed significantly higher identification scores obtained using automated process compared with standard manual deposition in all tested microbial groups (Gram-positive, Gram-negative, anaerobes, and yeasts). As shown by our data, automatic colony deposition on MALDI target results in an increase of MALDI-TOF MS identification scores and reproducibility.
Carbapenemase-mediated resistance to carbapenems in Enterobacteriaceae has become the main challenge in the treatment and prevention of infections recently. The partially unnoticed spread of OXA-48-type carbapenemase producers is usually assigned to low minimum inhibitory concentrations (MICs) of carbapenems that OXA-48-producing isolates often display. Therefore, there is an urgent need of specific and sensitive methods for isolation and detection of OXA-48 producers in clinical microbiology diagnostics. The influence of bicarbonates on carbapenem MICs against carbapenemase-producing Enterobacteriaceae was tested. We also checked whether the addition of bicarbonates to liquid media supplemented with meropenem may facilitate the selective enrichment of various carbapenemase producers in cultures. Furthermore, the sensitivity of carbapenemase confirmation by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) and spectrophotometric hydrolysis assays upon the addition of NH4HCO3 was examined. The addition of NaHCO3 significantly increased MICs of ertapenem and meropenem for OXA-48 producers. Furthermore, liquid media supplemented with NaHCO3 and meropenem were reliable for the selective enrichment of carbapenemase producers. The presence of NH4HCO3 in buffers used in the spectrophotometric and MALDI-TOF MS carbapenemase detection increased the sensitivity of that assay. Our results demonstrate that bicarbonates in media or reaction buffers can enhance the sensitivity of screening methods and diagnostic tests for carbapenemase producers.
- MeSH
- Bacterial Proteins analysis metabolism MeSH
- beta-Lactamases analysis metabolism MeSH
- Enterobacteriaceae enzymology isolation & purification MeSH
- Enterobacteriaceae Infections diagnosis microbiology MeSH
- Bicarbonates * MeSH
- Culture Media chemistry MeSH
- Microbial Sensitivity Tests methods MeSH
- Buffers MeSH
- Sensitivity and Specificity MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- beta-Lactamases MeSH
- carbapenemase MeSH Browser
- Bicarbonates * MeSH
- Culture Media MeSH
- Buffers MeSH
This study exploited the possibility to detect Citrobacter freundii-derived CMY-2-like cephalosporinases in Enterobacteriaceae clinical isolates using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Periplasmic proteins were prepared using a modified sucrose method and analyzed by MALDI-TOF MS. A ca. 39,850-m/z peak, confirmed to represent a C. freundii-like β-lactamase by in-gel tryptic digestion followed by MALDI-TOF/TOF MS, was observed only in CMY-producing isolates. We have also shown the potential of the assay to detect ACC- and DHA-like AmpC-type β-lactamases.
- MeSH
- Bacterial Proteins metabolism MeSH
- Cephalosporinase metabolism MeSH
- Enterobacteriaceae enzymology MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Cephalosporinase MeSH