Nejvíce citovaný článek - PubMed ID 23334948
Hard ticks and their bacterial endosymbionts (or would be pathogens)
Hematophagous arthropods are responsible for the transmission of a variety of pathogens that cause disease in humans and animals. Ticks of the Ixodes ricinus complex are vectors for some of the most frequently occurring human tick-borne diseases, particularly Lyme borreliosis and tick-borne encephalitis virus (TBEV). The search for vaccines against these diseases is ongoing. Efforts during the last few decades have primarily focused on understanding the biology of the transmitted viruses, bacteria and protozoans, with the goal of identifying targets for intervention. Successful vaccines have been developed against TBEV and Lyme borreliosis, although the latter is no longer available for humans. More recently, the focus of intervention has shifted back to where it was initially being studied which is the vector. State of the art technologies are being used for the identification of potential vaccine candidates for anti-tick vaccines that could be used either in humans or animals. The study of the interrelationship between ticks and the pathogens they transmit, including mechanisms of acquisition, persistence and transmission have come to the fore, as this knowledge may lead to the identification of critical elements of the pathogens' life-cycle that could be targeted by vaccines. Here, we review the status of our current knowledge on the triangular relationships between ticks, the pathogens they carry and the mammalian hosts, as well as methods that are being used to identify anti-tick vaccine candidates that can prevent the transmission of tick-borne pathogens.
- Klíčová slova
- Anaplasma, Babesia, Borrelia, Ixodes, Midgut, Rickettsia, Saliva, TBEV, Tick, Vaccine,
- MeSH
- Borrelia MeSH
- infekce přenášené vektorem MeSH
- klíště mikrobiologie virologie MeSH
- klíšťová encefalitida prevence a kontrola MeSH
- kousnutí klíštětem prevence a kontrola MeSH
- lidé MeSH
- lymeská nemoc prevence a kontrola MeSH
- nemoci přenášené klíšťaty prevence a kontrola přenos MeSH
- proteiny členovců imunologie MeSH
- sliny MeSH
- vakcíny imunologie MeSH
- viry klíšťové encefalitidy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- proteiny členovců MeSH
- vakcíny MeSH
Bacterial endosymbionts of ticks are of interest due to their close evolutionary relationships with tick-vectored pathogens. For instance, whereas many ticks contain Francisella-like endosymbionts (FLEs), others transmit the mammalian pathogen Francisella tularensis. We recently sequenced the genome of an FLE present in the hard tick Amblyomma maculatum (FLE-Am) and showed that it likely evolved from a pathogenic ancestor. In order to expand our understanding of FLEs, in the current study we sequenced the genome of an FLE in the soft tick Ornithodoros moubata and compared it to the genomes of FLE-Am, Francisella persica-an FLE in the soft tick Argus (Persicargas) arboreus, Francisella sp. MA067296-a clinical isolate responsible for an opportunistic human infection, and F. tularensis, the established human pathogen. We determined that FLEs and MA067296 belonged to a sister taxon of mammalian pathogens, and contained inactivated versions of virulence genes present in F. tularensis, indicating that the most recent common ancestor shared by FLEs and F. tularensis was a potential mammalian pathogen. Our analyses also revealed that the two soft ticks (O. moubata and A. arboreus) probably acquired their FLEs separately, suggesting that the virulence attenuation observed in FLEs are not the consequence of a single acquisition event followed by speciation, but probably due to independent transitions of pathogenic francisellae into nonpathogenic FLEs within separate tick lineages. Additionally, we show that FLEs encode intact pathways for the production of several B vitamins and cofactors, denoting that they could function as nutrient-provisioning endosymbionts in ticks.
- Klíčová slova
- Coxiella, Coxiella-like, Francisella, Francisella-like, endosymbiont, tick,
- MeSH
- Argasidae mikrobiologie fyziologie MeSH
- bakteriální geny MeSH
- biologická evoluce MeSH
- faktory virulence genetika MeSH
- Francisella genetika izolace a purifikace fyziologie MeSH
- fylogeneze MeSH
- gramnegativní bakteriální infekce mikrobiologie MeSH
- lidé MeSH
- symbióza * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- faktory virulence MeSH
Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases.
- Klíčová slova
- Anaplasma, Babesia, Borrelia, flavivirus, immunology, microbiome, tick, vaccine,
- MeSH
- arachnida jako vektory mikrobiologie parazitologie virologie MeSH
- interakce hostitele a patogenu * MeSH
- klíšťata mikrobiologie parazitologie fyziologie virologie MeSH
- lidé MeSH
- nemoci přenášené klíšťaty epidemiologie MeSH
- přenos infekční nemoci * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Ticks, as vectors of several notorious zoonotic pathogens, represent an important and increasing threat for human and animal health in Europe. Recent applications of new technology revealed the complexity of the tick microbiome, which may affect its vectorial capacity. Appreciation of these complex systems is expanding our understanding of tick-borne pathogens, leading us to evolve a more integrated view that embraces the 'pathobiome'; the pathogenic agent integrated within its abiotic and biotic environments. In this review, we will explore how this new vision will revolutionize our understanding of tick-borne diseases. We will discuss the implications in terms of future research approaches that will enable us to efficiently prevent and control the threat posed by ticks.
- Klíčová slova
- Ixodes ricinus, co-infections, emerging diseases, new paradigm, next-generation sequencing, pathobiome, unknown pathogens, vector competence, zoonoses,
- MeSH
- klíšťata mikrobiologie virologie MeSH
- lidé MeSH
- mikrobiota * MeSH
- nemoci přenášené klíšťaty epidemiologie mikrobiologie přenos virologie MeSH
- zoonózy epidemiologie mikrobiologie přenos virologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Evropa epidemiologie MeSH