Nejvíce citovaný článek - PubMed ID 23463873
PURPOSE OF REVIEW: We summarize structural (s)MRI findings of gray matter (GM) atrophy related to cognitive impairment in Alzheimer's disease (AD) and Parkinson's disease (PD) in light of new analytical approaches and recent longitudinal studies results. RECENT FINDINGS: The hippocampus-to-cortex ratio seems to be the best sMRI biomarker to discriminate between various AD subtypes, following the spatial distribution of tau pathology, and predict rate of cognitive decline. PD is clinically far more variable than AD, with heterogeneous underlying brain pathology. Novel multivariate approaches have been used to describe patterns of early subcortical and cortical changes that relate to more malignant courses of PD. New emerging analytical approaches that combine structural MRI data with clinical and other biomarker outcomes hold promise for detecting specific GM changes in the early stages of PD and preclinical AD that may predict mild cognitive impairment and dementia conversion.
- Klíčová slova
- Alzheimer’s disease, Cognition, Gray matter atrophy, Parkinson’s disease, Structural magnetic resonance imaging,
- MeSH
- Alzheimerova nemoc patologie psychologie MeSH
- biologické markery MeSH
- kognice * MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mozek patologie MeSH
- Parkinsonova nemoc patologie psychologie MeSH
- šedá hmota patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
INTRODUCTION: While progressive MRI brain changes characterize advanced Parkinson's disease (PD), little has been discovered about structural alterations in the earliest phase of the disease, i.e. in patients with motor symptoms and with normal cognition. Our study aimed to detect grey matter (GM) and white matter (WM) changes in PD patients without cognitive impairment. METHODS: Twenty PD patients and twenty-one healthy controls (HC) were tested for attention, executive function, working memory, and visuospatial and language domains. High-resolution T1-weighted and 60 directional diffusion-weighted 3T MRI images were acquired. The cortical, deep GM and WM volumes and density, as well as the diffusion properties of WM, were calculated. Analyses were repeated on data flipped to the side of the disease origin. RESULTS: PD patients did not show any significant differences from HC in cognitive functioning or in brain volumes. Decreased GM intensity was found in the left superior parietal lobe in the right (p<0.02) and left (p<0.01) flipped data. The analysis of original, un-flipped data demonstrated elevated axial diffusivity (p<0.01) in the superior and anterior corona radiata, internal capsule, and external capsule in the left hemisphere of PD relative to HC, while higher mean and radial diffusivity were discovered in the right (p<0.02 and p<0.03, respectively) and left (p<0.02 and p<0.02, respectively) in the fronto-temporal WM utilizing flipped data. CONCLUSIONS: PD patients without cognitive impairment and GM atrophy demonstrated widespread alterations of WM microstructure. Thus, WM impairment in PD might be a sensitive sign preceding the neuronal loss in associated GM regions.
- MeSH
- atrofie MeSH
- bílá hmota diagnostické zobrazování patologie MeSH
- dospělí MeSH
- kognice MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- neuropsychologické testy MeSH
- neurozobrazování MeSH
- Parkinsonova nemoc diagnostické zobrazování patologie psychologie MeSH
- progrese nemoci MeSH
- šedá hmota diagnostické zobrazování patologie MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Histological evidence suggests that pathology in Parkinson's disease (PD) goes beyond nigrostriatal degeneration and also affects the cerebral cortex. Quantitative MRI (qMRI) techniques allow the assessment of changes in brain tissue composition. However, the development and pattern of disease-related cortical changes have not yet been demonstrated in PD with qMRI methods. The aim of this study was to investigate longitudinal cortical microstructural changes in PD with quantitative T1 relaxometry. METHODS: 13 patients with mild to moderate PD and 20 matched healthy subjects underwent high resolution T1 mapping at two time points with an interval of 6.4 years (healthy subjects: 6.5 years). Data from two healthy subjects had to be excluded due to MRI artifacts. Surface-based analysis of cortical T1 values was performed with the FreeSurfer toolbox. RESULTS: In PD patients, a widespread decrease of cortical T1 was detected during follow-up which affected large parts of the temporo-parietal and occipital cortices and also frontal areas. In contrast, age-related T1 decrease in the healthy control group was much less pronounced and only found in lateral frontal, parietal and temporal areas. Average cortical T1 values did not differ between the groups at baseline (p = 0.17), but were reduced in patients at follow-up (p = 0.0004). Annualized relative changes of cortical T1 were higher in patients vs. healthy subjects (patients: - 0.72 ± 0.64%/year; healthy subjects: - 0.17 ± 0.41%/year, p = 0.007). CONCLUSIONS: In patients with PD, the development of widespread changes in cortical microstructure was observed as reflected by a reduction of cortical T1. The pattern of T1 decrease in PD patients exceeded the normal T1 decrease as found in physiological aging and showed considerable overlap with the pattern of cortical thinning demonstrated in previous PD studies. Therefore, cortical T1 might be a promising additional imaging marker for future longitudinal PD studies. The biological mechanisms underlying cortical T1 reductions remain to be further elucidated.
- Klíčová slova
- BG, basal ganglia, Cerebral cortex, GE, gradient echo, GM, gray matter, HY, Hoehn and Yahr, Longitudinal, MRI, magnetic resonance imaging, PD, Parkinson's disease, Parkinson's disease, Quantitative MRI, Relaxometry, SN, substantia nigra, T1, UPDRS III, motor part of the Unified Parkinson's disease rating scale, qMRI, quantitative MRI,
- MeSH
- lidé středního věku MeSH
- lidé MeSH
- longitudinální studie MeSH
- magnetická rezonanční tomografie metody MeSH
- mozková kůra diagnostické zobrazování MeSH
- Parkinsonova nemoc diagnostické zobrazování MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH