Nejvíce citovaný článek - PubMed ID 23515178
Immune cells have emerged as powerful regulators of regenerative as well as pathological processes. The vast majority of regenerative immunoengineering efforts have focused on macrophages; however, growing evidence suggests that other cells of both the innate and adaptive immune system are as important for successful revascularization and tissue repair. Moreover, spatiotemporal regulation of immune cells and their signaling have a significant impact on the regeneration speed and the extent of functional recovery. In this review, we summarize the contribution of different types of immune cells to the healing process and discuss ways to manipulate and control immune cells in favor of vascularization and tissue regeneration. In addition to cell delivery and cell-free therapies using extracellular vesicles, we discuss in situ strategies and engineering approaches to attract specific types of immune cells and modulate their phenotypes. This field is making advances to uncover the extraordinary potential of immune cells and their secretome in the regulation of vascularization and tissue remodeling. Understanding the principles of immunoregulation will help us design advanced immunoengineering platforms to harness their power for tissue regeneration.
- Klíčová slova
- Biomaterial, Cell delivery, Extracellular vesicles, Immune cell metabolism, Immunomodulation, Macrophages, Neutrophils, Patterning, Stiffness, T cells,
- MeSH
- biokompatibilní materiály MeSH
- hojení ran * MeSH
- imunita MeSH
- lidé MeSH
- makrofágy * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- biokompatibilní materiály MeSH
The review intends to overview a wide range of nanostructured natural, synthetic and biological membrane implants for tissue engineering to help in retinal degenerative diseases. Herein, we discuss the transplantation strategies and the new development of material in combination with cells such as induced pluripotent stem cells (iPSC), mature retinal cells, adult stem cells, retinal progenitors, fetal retinal cells, or retinal pigment epithelial (RPE) sheets, etc. to be delivered into the subretinal space. Retinitis pigmentosa and age-related macular degeneration (AMD) are the most common retinal diseases resulting in vision impairment or blindness by permanent loss in photoreceptor cells. Currently, there are no therapies that can repair permanent vision loss, and the available treatments can only delay the advancement of retinal degeneration. The delivery of cell-based nanostructure scaffolds has been presented to enrich cell survival and direct cell differentiation in a range of retinal degenerative models. In this review, we sum up the research findings on different types of nanostructure scaffolds/substrate or material-based implants, with or without cells, used to deliver into the subretinal space for retinal diseases. Though, clinical and pre-clinical trials are still needed for these transplants to be used as a clinical treatment method for retinal degeneration.
- Klíčová slova
- biomaterial, cell transplantation, implants, nanostructures, retinal degenerative disease, scaffolds,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The adverse immune responses to implantable biomedical devices is a general problem with important consequences for the functionality of implants. Immunomodulatory soft hydrogel-based interfaces between the implant and the host can attenuate these reactions. Moreover, encapsulation of the patient's own immune cells into these interfaces can lead to the personalisation of implants from the immune reaction point of view. Herein, we described a co-crosslinkable composite hydrogel (composed of gelatin and hyaluronic acid), which could be used for the encapsulation of macrophages in the presence of an anti-inflammatory phenotype-fixing cytokine cocktail. To mimick the incoming immune cells on the coating surface in vivo, peripheral blood mononuclear cells were seeded on the hydrogels. The encapsulation of monocytic cells into the composite hydrogels in the presence of cytokine cocktails at 5× or 10× concentrations led to the spreading of the encapsulated cells instead of the formation of clusters. Moreover, the secretion of the anti-inflammatory cytokines IL-1RA and CCL-18 was significantly increased. The attachment of PBMC to the surface of the hydrogel is dependent on the hydrogel composition and also significantly increased in the presence of the cytokine cocktail together with the number of CD68+ cells on the hydrogel surface. Our study demonstrates that the delivery of a polarisation cocktail with biocompatible hydrogels can control the initial response by the incoming immune cells. This effect can be improved by the encapsulation of autologous monocytes that are also polarised by the cytokine cocktail and secrete additional anti-inflammatory cytokines. This interface can fine tune the initial immune response to an implanted biomaterial in a personalised manner.
- Publikační typ
- časopisecké články MeSH