Most cited article - PubMed ID 23723988
Novel evolutionary lineages revealed in the Chaetothyriales (fungi) based on multigene phylogenetic analyses and comparison of its secondary structure
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Leuconeurospora bharatiensis from accumulated snow sediment sample. Argentina, Pseudocercospora quetri on leaf spots of Luma apiculata. Australia, Polychaetomyces verrucosus on submerged decaying wood in sea water, Ustilaginoidea cookiorum on Scleria levis, Xylaria guardiae as endophyte from healthy leaves of Macaranga tanarius. Belgium, Iodophanus taxi on leaf of Taxus baccata. Belize, Hygrocybe mirabilis on soil. Brazil, Gongronella irregularis from soil, Linodochium splendidum on decaying sheath of Euterpe oleracea, Nothophysalospora agapanthi (incl. Nothophysalospora gen. nov.) on flower stalks of Agapanthus praecox, Phaeosphaeria tabebuiae on leaf of Tabebuia sp., Verrucohypha endophytica (incl. Verrucohypha gen. nov.) from healthy roots of Acrocomia aculeata. Estonia, Inosperma apricum on soil under Quercus robur. Greece, Monosporascus solitarius isolated from surface-sterilised, asymptomatic roots of Microthlaspi perfoliatum. India, Diaporthe neocapsici on young seedling stems of Capsicum annuum, Fuscoporia naditirana on dead wood, Sebacina spongicarpa on soil, Torula kanvae from the gut of a Copris signatus beetle. Iran, Sarcinomyces pruni from twig and petiole tissues of Prunus persica and Prunus armeniaca, Xenodidymella quercicola from leaf spots of Quercus brantii. Italy, Agaricus aereiceps on grass, Agaricus bellui in meadows, Agaricus fabrianensis in urban grasslands, Beaucarneamyces muscorum on moss growing in forest, Xenoanthostomella quercus on leaf litter of Quercus ilex. Netherlands, Alfaria neerlandica on stem lesions of Cortaderia selloana, Neodictyosporium juncicola on culms of Juncus maritimus, Penicillium geertdesnooi from soil under Papaver rhoeas, Russula abscondita on rich calcareous soil with Quercus, Russula multiseptata on rich clay soil with Quercus, Russula purpureopallescens on soil with Populus, Sarocladium caricicola on leaves of Carex riparia. Pakistan, Circinaria shimlaensis on limestone rocks. Panama, Acrocalymma philodendri on leaf spots of Philodendron sp., Caligospora panamaensis on leaf litter, Chlamydocillium simulans associated with a Xylaria sp., Corynesporina panamaensis on leaf litter, Cylindromonium panamaense on twig litter of angiosperm, Cyphellophora panamaensis on twig litter of angiosperm, Microcera panamensis on leaf litter of fern, Pseudotricholoma pusillum in tropical montane forest dominated by Quercus spp., Striaticonidium panamaense on leaf litter, Yunnanomyces panamaensis on leaf litter. Poland, Albocremella abscondita (incl. Albocremella gen. nov.) from rhizoids of liverwort Conocephalum salebrosum. Portugal, Agaricus occidualis in meadows. South Africa, Alternaria elsarustiae on culms of unidentified Poaceae, Capronia capensis on dead twig of unidentified angiosperm, Codinaeella bulbinicola on dead leaves of Bulbine frutescens, Cytospora carpobroticola on leaf of Carpobrotus quadrifidus, Neophaeomoniella watsoniae on leaf of Watsonia sp., Neoplatysporoides aloigena on leaf of Aloe khamiesensis, Nothodactylaria comitabilis on living leaf of Itea rhamnoides, Nothopenidiella beaucarneae (incl. Nothopenidiella gen. nov.) on dead leaves of Beaucarnea stricta, Orbilia kirstenboschensis on dead flower stalks of Agapanthus praecox, Phragmocephala agapanthi on dead flower stalks of Agapanthus praecox, Podocarpigena hagahagaensis (incl. Podocarpigena gen. nov.) on leaf spots of Podocarpus falcatus, Sporisorium enterogonipteri from the gut of Gonipterus sp., Synnemapestaloides searsiae on leaf of Searsia populifolia, Xenophragmocapnias diospyri (incl. Xenophragmocapnias gen. nov.) on leaf spots of Diospyros sp., Yunnanomyces hagahagaensis on leaf spots of Sideroxylon inerme. Spain, Agaricus basicinctus in meadows, Agaricus quercetorum among leaf litter in oak forests, Coprinopsis palaciosii on degraded woody debris, Inocybe complutensis in calcareous loamy soil, Inocybe tanitiae in calcareous sandy soil, Mycena subfragosa on dead leaves of Salix atrocinerea, Pseudobaeospora cortegadensis in laurel forests, Trichoderma sedimenticola from fluvial sediments. Sweden, Inocybe badjelanndana on calcareous soil. Ukraine, Beaucarneamyces lupini on overwintered stems of Lupinus polyphyllus, Protocreopsis globulosa on thallus and apothecia of Lecania cyrtella on bark of Populus sp., Thyridium tiliae on dead twigs of Tilia sp. USA, Cladosporium louisianense, Cyphellophora americana from a bedroom vent, Extremus massachusettsianus from lyse buffer, Myxotrichum tapetae on carpet in basement, Neospissiomyces floridanus (incl. Neospissiomyces gen. nov.) on swab from hospital, Polychaetomyces marinus (incl. Polychaetomyces gen. nov.) on submerged driftwood in sea water, Steccherinum fragrans on hardwood fallen on the beach, Steinbeckomyces carnegieae (incl. Steinbeckomyces gen. nov.) on Carnegiea gigantea, Tolypocladium pennsylvanicum from air sampled in basement. Vietnam, Acidomyces ducanhii from Aglaia flowers, Acidomyces paludis from dead bark of Acacia sp., Phakopsora sageretiae on Sageretia theezans, Puccinia stixis on Stixis scandens. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Wingfield MJ, Jurjević Ž, et al. (2024). Fungal Planet description sheets: 1697-1780. Fungal Systematics and Evolution 14: 325-577. doi: 10.3114/fuse.2024.14.19.
- Keywords
- ITS nrDNA barcodes, LSU, new taxa, systematics,
- Publication type
- Journal Article MeSH
Black yeasts comprise a group of Ascomycota of the order Chaetothyriales with highly variable morphology, a great diversity of ecological niches and life cycles. Despite the ubiquity of these fungi, their diversity in freshwater sediments is still poorly understood. During a survey of culturable Ascomycota from river and stream sediments in various sampling sites in Spain, we obtained 47 isolates of black yeasts by using potato dextrose agar supplemented with cycloheximide. A preliminary morphological study and sequence analyses of the internal transcribed spacer region (ITS) and the large subunit (LSU) of the nuclear rDNA revealed that most of the isolates belonged to the family Herpotrichiellaceae. We have confidently identified 30 isolates representing the following species: Capronia pulcherrima, Cladophialophora emmonsii, Exophiala equina, Exophiala pisciphila, Exophiala radicis, and Phialophora americana. However, we encountered difficulty in assigning 17 cultures to any known species within Chaetothyriales. Combining phenotypic and multi-locus phylogenetic analyses based on the ITS, LSU, β-tubulin (tub2) and translation elongation factor 1-α (tef1-α) gene markers, we propose the new genus Aciculomyces in the Herpotrichiellaceae to accommodate the novel species Aciculomyces restrictus. Other novel species in this family include Cladophialophora denticulata, Cladophialophora heterospora, Cladophialophora irregularis, Exophiala candelabrata, Exophiala dehoogii, Exophiala ramosa, Exophiala verticillata and Phialophora submersa. The new species Cyphellophora spiralis, closely related to Cyphellophora suttonii, is described, and the phylogeny of the genus Anthopsis in the family Cyphellophoraceae is discussed. By utilizing these four markers, we were able to strengthen the phylogenetic resolution and provide more robust taxonomic assessments within the studied group. Our findings indicate that freshwater sediments may serve as a reservoir for intriguing black yeasts, which warrant further investigation to address gaps in phylogenetic relationships, particularly within Herpotrichiellaceae. Citation: Torres-Garcia D, García D, Réblová M, et al. 2023. Diversity and novel lineages of black yeasts in Chaetothyriales from freshwater sediments in Spain. Persoonia 51: 194-228. doi: 10.3767/persoonia.2023.51.05.
- Keywords
- Ascomycota, Cyphellophoraceae, Herpotrichiellaceae, biodiversity, fluvial sediments, new taxa, phylogeny, taxonomy,
- Publication type
- Journal Article MeSH
Historically, Hyaloscypha s. lat. (Hyaloscyphaceae, Helotiales) included various saprobes with small apothecia formed on decaying plant matter, usually wood, that were defined by chemical and (ultra)structural aspects. However, recent molecular phylogenetic and resynthesis studies have narrowed the concept of the genus and shown that it contains several widely distributed species with unknown sexual morphs that form ectomycorrhizae, ericoid mycorrhizae, and mycothalli and also grow endophytically in plant roots and hypogeous ectomycorrhizal (EcM) fruitbodies (i.e., the historical Hymenoscyphus ericae aggregate). Hence, some of the sexually reproducing saprobic Hyaloscypha s. lat. and the symbionts belong to the monophyletic Hyaloscypha s. str. Here, we introduce two new root-symbiotic Hyaloscypha s. str. species, i.e., H. gabretae and H. gryndleri spp. nov. While the former was isolated only from ericaceous hosts (Vaccinium myrtillus from Southern Bohemia, Czechia and Calluna vulgaris from England, UK), the latter was obtained from a basidiomycetous EcM root tip of Picea abies (Pinaceae), roots of Pseudorchis albida (Orchidaceae), and hair roots of V. myrtillus from Southern Bohemia and C. vulgaris from England. Hyaloscypha gryndleri comprises two closely related lineages, suggesting ongoing speciation, possibly connected with the root-symbiotic life-style. Fungal isolates from ericaceous roots with sequences similar to H. gabretae and H. gryndleri have been obtained in Japan and in Canada and Norway, respectively, suggesting a wide and scattered distribution across the Northern Hemisphere. In a series of in vitro experiments, both new species failed to form orchid mycorrhizal structures in roots of P. albida and H. gryndleri repeatedly formed what morphologically corresponds to the ericoid mycorrhizal (ErM) symbiosis in hair roots of V. myrtillus, whereas the ErM potential of H. gabretae remained unresolved. Our results highlight the symbiotic plasticity of root-associated hyaloscyphoid mycobionts as well as our limited knowledge of their diversity and distribution, warranting further ecophysiological and taxonomic research of these important and widespread fungi.
- Keywords
- Core Ericaceae, Ericoid mycorrhizal fungi, Hyaloscypha hepaticicola, Hymenoscyphus ericae, Meliniomyces, Pezoloma ericae, Rhizoscyphus ericae, Root symbiotic fungi,
- MeSH
- Ascomycota * MeSH
- Tracheophyta * MeSH
- Phylogeny MeSH
- Plant Roots MeSH
- Mycorrhizae * genetics MeSH
- Publication type
- Journal Article MeSH
Novel species of fungi described in this study include those from various countries as follows: Antartica, Cladosporium austrolitorale from coastal sea sand. Australia, Austroboletus yourkae on soil, Crepidotus innuopurpureus on dead wood, Curvularia stenotaphri from roots and leaves of Stenotaphrum secundatum and Thecaphora stajsicii from capsules of Oxalis radicosa. Belgium, Paraxerochrysium coryli (incl. Paraxerochrysium gen. nov.) from Corylus avellana. Brazil, Calvatia nordestina on soil, Didymella tabebuiicola from leaf spots on Tabebuia aurea, Fusarium subflagellisporum from hypertrophied floral and vegetative branches of Mangifera indica and Microdochium maculosum from living leaves of Digitaria insularis. Canada, Cuphophyllus bondii from a grassland. Croatia, Mollisia inferiseptata from a rotten Laurus nobilis trunk. Cyprus, Amanita exilis on calcareous soil. Czech Republic, Cytospora hippophaicola from wood of symptomatic Vaccinium corymbosum. Denmark, Lasiosphaeria deviata on pieces of wood and herbaceous debris. Dominican Republic, Calocybella goethei among grass on a lawn. France (Corsica), Inocybe corsica on wet ground. France (French Guiana), Trechispora patawaensis on decayed branch of unknown angiosperm tree and Trechispora subregularis on decayed log of unknown angiosperm tree. Germany, Paramicrothecium sambuci (incl. Paramicrothecium gen. nov.) on dead stems of Sambucus nigra. India, Aureobasidium microtermitis from the gut of a Microtermes sp. termite, Laccaria diospyricola on soil and Phylloporia tamilnadensis on branches of Catunaregam spinosa. Iran, Pythium serotinoosporum from soil under Prunus dulcis. Italy, Pluteus brunneovenosus on twigs of broadleaved trees on the ground. Japan, Heterophoma rehmanniae on leaves of Rehmannia glutinosa f. hueichingensis. Kazakhstan, Murispora kazachstanica from healthy roots of Triticum aestivum. Namibia, Caespitomonium euphorbiae (incl. Caespitomonium gen. nov.) from stems of an Euphorbia sp. Netherlands, Alfaria junci, Myrmecridium junci, Myrmecridium juncicola, Myrmecridium juncigenum, Ophioceras junci, Paradinemasporium junci (incl. Paradinemasporium gen. nov.), Phialoseptomonium junci, Sporidesmiella juncicola, Xenopyricularia junci and Zaanenomyces quadripartis (incl. Zaanenomyces gen. nov.), from dead culms of Juncus effusus, Cylindromonium everniae and Rhodoveronaea everniae from Evernia prunastri, Cyphellophora sambuci and Myrmecridium sambuci from Sambucus nigra, Kiflimonium junci, Sarocladium junci, Zaanenomyces moderatricis-academiae and Zaanenomyces versatilis from dead culms of Juncus inflexus, Microcera physciae from Physcia tenella, Myrmecridium dactylidis from dead culms of Dactylis glomerata, Neochalara spiraeae and Sporidesmium spiraeae from leaves of Spiraea japonica, Neofabraea salicina from Salix sp., Paradissoconium narthecii (incl. Paradissoconium gen. nov.) from dead leaves of Narthecium ossifragum, Polyscytalum vaccinii from Vaccinium myrtillus, Pseudosoloacrosporiella cryptomeriae (incl. Pseudosoloacrosporiella gen. nov.) from leaves of Cryptomeria japonica, Ramularia pararhabdospora from Plantago lanceolata, Sporidesmiella pini from needles of Pinus sylvestris and Xenoacrodontium juglandis (incl. Xenoacrodontium gen. nov. and Xenoacrodontiaceae fam. nov.) from Juglans regia. New Zealand, Cryptometrion metrosideri from twigs of Metrosideros sp., Coccomyces pycnophyllocladi from dead leaves of Phyllocladus alpinus, Hypoderma aliforme from fallen leaves Fuscopora solandri and Hypoderma subiculatum from dead leaves Phormium tenax. Norway, Neodevriesia kalakoutskii from permafrost and Variabilispora viridis from driftwood of Picea abies. Portugal, Entomortierella hereditatis from a biofilm covering a deteriorated limestone wall. Russia, Colpoma junipericola from needles of Juniperus sabina, Entoloma cinnamomeum on soil in grasslands, Entoloma verae on soil in grasslands, Hyphodermella pallidostraminea on a dry dead branch of Actinidia sp., Lepiota sayanensis on litter in a mixed forest, Papiliotrema horticola from Malus communis, Paramacroventuria ribis (incl. Paramacroventuria gen. nov.) from leaves of Ribes aureum and Paramyrothecium lathyri from leaves of Lathyrus tuberosus. South Africa, Harzia combreti from leaf litter of Combretum collinum ssp. sulvense, Penicillium xyleborini from Xyleborinus saxesenii, Phaeoisaria dalbergiae from bark of Dalbergia armata, Protocreopsis euphorbiae from leaf litter of Euphorbia ingens and Roigiella syzygii from twigs of Syzygium chordatum. Spain, Genea zamorana on sandy soil, Gymnopus nigrescens on Scleropodium touretii, Hesperomyces parexochomi on Parexochomus quadriplagiatus, Paraphoma variabilis from dung, Phaeococcomyces kinklidomatophilus from a blackened metal railing of an industrial warehouse and Tuber suaveolens in soil under Quercus faginea. Svalbard and Jan Mayen, Inocybe nivea associated with Salix polaris. Thailand, Biscogniauxia whalleyi on corticated wood. UK, Parasitella quercicola from Quercus robur. USA, Aspergillus arizonicus from indoor air in a hospital, Caeliomyces tampanus (incl. Caeliomyces gen. nov.) from office dust, Cippumomyces mortalis (incl. Cippumomyces gen. nov.) from a tombstone, Cylindrium desperesense from air in a store, Tetracoccosporium pseudoaerium from air sample in house, Toxicocladosporium glendoranum from air in a brick room, Toxicocladosporium losalamitosense from air in a classroom, Valsonectria portsmouthensis from air in men's locker room and Varicosporellopsis americana from sludge in a water reservoir. Vietnam, Entoloma kovalenkoi on rotten wood, Fusarium chuoi inside seed of Musa itinerans, Micropsalliota albofelina on soil in tropical evergreen mixed forests and Phytophthora docyniae from soil and roots of Docynia indica. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Osieck ER, Jurjević Ž, et al. 2021. Fungal Planet description sheets: 1284-1382. Persoonia 47: 178-374. https://doi.org/10.3767/persoonia.2021.47.06.
- Keywords
- ITS nrDNA barcodes, LSU, new taxa, systematics,
- Publication type
- Journal Article MeSH
Novel species of fungi described in this study include those from various countries as follows: Australia, Austroboletus asper on soil, Cylindromonium alloxyli on leaves of Alloxylon pinnatum, Davidhawksworthia quintiniae on leaves of Quintinia sieberi, Exophiala prostantherae on leaves of Prostanthera sp., Lactifluus lactiglaucus on soil, Linteromyces quintiniae (incl. Linteromyces gen. nov.) on leaves of Quintinia sieberi, Lophotrichus medusoides from stem tissue of Citrus garrawayi, Mycena pulchra on soil, Neocalonectria tristaniopsidis (incl. Neocalonectria gen. nov.) and Xyladictyochaeta tristaniopsidis on leaves of Tristaniopsis collina, Parasarocladium tasmanniae on leaves of Tasmannia insipida, Phytophthora aquae-cooljarloo from pond water, Serendipita whamiae as endophyte from roots of Eriochilus cucullatus, Veloboletus limbatus (incl. Veloboletus gen. nov.) on soil. Austria, Cortinarius glaucoelotus on soil. Bulgaria, Suhomyces rilaensis from the gut of Bolitophagus interruptus found on a Polyporus sp. Canada, Cantharellus betularum among leaf litter of Betula, Penicillium saanichii from house dust. Chile, Circinella lampensis on soil, Exophiala embothrii from rhizosphere of Embothrium coccineum. China, Colletotrichum cycadis on leaves of Cycas revoluta. Croatia, Phialocephala melitaea on fallen branch of Pinus halepensis. Czech Republic, Geoglossum jirinae on soil, Pyrenochaetopsis rajhradensis from dead wood of Buxus sempervirens. Dominican Republic, Amanita domingensis on litter of deciduous wood, Melanoleuca dominicana on forest litter. France, Crinipellis nigrolamellata (Martinique) on leaves of Pisonia fragrans, Talaromyces pulveris from bore dust of Xestobium rufovillosum infesting floorboards. French Guiana, Hypoxylon hepaticolor on dead corticated branch. Great Britain, Inocybe ionolepis on soil. India, Cortinarius indopurpurascens among leaf litter of Quercus leucotrichophora. Iran, Pseudopyricularia javanii on infected leaves of Cyperus sp., Xenomonodictys iranica (incl. Xenomonodictys gen. nov.) on wood of Fagus orientalis. Italy, Penicillium vallebormidaense from compost. Namibia, Alternaria mirabibensis on plant litter, Curvularia moringae and Moringomyces phantasmae (incl. Moringomyces gen. nov.) on leaves and flowers of Moringa ovalifolia, Gobabebomyces vachelliae (incl. Gobabebomyces gen. nov.) on leaves of Vachellia erioloba, Preussia procaviae on dung of Procavia capensis. Pakistan, Russula shawarensis from soil on forest floor. Russia, Cyberlindnera dauci from Daucus carota. South Africa, Acremonium behniae on leaves of Behnia reticulata, Dothiora aloidendri and Hantamomyces aloidendri (incl. Hantamomyces gen. nov.) on leaves of Aloidendron dichotomum, Endoconidioma euphorbiae on leaves of Euphorbia mauritanica, Eucasphaeria proteae on leaves of Protea neriifolia, Exophiala mali from inner fruit tissue of Malus sp., Graminopassalora geissorhizae on leaves of Geissorhiza splendidissima, Neocamarosporium leipoldtiae on leaves of Leipoldtia schultzii, Neocladosporium osteospermi on leaf spots of Osteospermum moniliferum, Neometulocladosporiella seifertii on leaves of Combretum caffrum, Paramyrothecium pituitipietianum on stems of Grielum humifusum, Phytopythium paucipapillatum from roots of Vitis sp., Stemphylium carpobroti and Verrucocladosporium carpobroti on leaves of Carpobrotus quadrifolius, Suttonomyces cephalophylli on leaves of Cephalophyllum pilansii. Sweden, Coprinopsis rubra on cow dung, Elaphomyces nemoreus from deciduous woodlands. Spain, Polyscytalum pini-canariensis on needles of Pinus canariensis, Pseudosubramaniomyces septatus from stream sediment, Tuber lusitanicum on soil under Quercus suber. Thailand, Tolypocladium flavonigrum on Elaphomyces sp. USA, Chaetothyrina spondiadis on fruits of Spondias mombin, Gymnascella minnisii from bat guano, Juncomyces patwiniorum on culms of Juncus effusus, Moelleriella puertoricoensis on scale insect, Neodothiora populina (incl. Neodothiora gen. nov.) on stem cankers of Populus tremuloides, Pseudogymnoascus palmeri from cave sediment. Vietnam, Cyphellophora vietnamensis on leaf litter, Tylopilus subotsuensis on soil in montane evergreen broadleaf forest. Morphological and culture characteristics are supported by DNA barcodes.
- Keywords
- ITS nrDNA barcodes, LSU, new taxa, systematics,
- Publication type
- Journal Article MeSH
The genus Ceratostomella has a long history of taxonomic confusion. While species with evanescent asci have been transferred to the Microascales and Ophiostomatales, the taxonomic status of species with persistent asci has not been completely resolved. In previous studies using DNA sequence data, cultures and morphology, several Ceratostomella spp. were allocated in 13 genera in the Eurotiomycetes and Sordariomycetes. In our study, the systematics of the remaining Ceratostomella spp. with persistent asci is revisited with new collection data, cultures and phylogeny based on novel DNA sequences from six nuclear loci. Bayesian inference and Maximum Likelihood analyses support the monophyly of several wood-inhabiting species formerly classified in Ceratostomella and other unknown morphologically similar taxa and their division into four genera, i.e. Lentomitella, Spadicoides, Torrentispora and the newly described Calyptosphaeria. This robust clade represents the order Xenospadicoidales in the Sordariomycetidae. Comparative analysis of the ITS2 secondary structure revealed a genetic variation among Lentomitella isolates; 11 species were recognised, of which five are newly introduced and two are new combinations. Other taxonomic novelties include four new species and eight new combinations in Calyptosphaeria, Spadicoides, and Torrentispora. Molecular data suggest that Spadicoides is polyphyletic. The core of the genus is positioned in the Xenospadicoidales; Spadicoides s. str. is experimentally linked with sexual morphs for the first time. Based on DNA sequence data, the monotypic genera Xenospadicoides and Pseudodiplococcium are reduced to synonymy under Spadicoides, while Fusoidispora and Pseudoannulatascus are synonymised with Torrentispora. Members of the Xenospadicoidales inhabit decaying wood in terrestrial and freshwater environments and share a few morphological characters such as the absence of stromatic tissue, ascomata with a cylindrical or rostrate neck, similar anatomies of the ascomatal walls, thin-walled unitunicate asci with a non-amyloid apical annulus, disintegrating paraphyses, usually ellipsoidal to fusiform ascospores and holoblastic-denticulate or tretic conidiogenesis. Revised Ceratostomella spp. with persistent asci are listed and the taxonomic status of each species is re-evaluated based on revision of the holotype and other representative material, published details and available phylogenetic data.
- Keywords
- C. tenebrosa Réblová & A.N. Mill., C. tropica (Huhndorf et al.) Réblová & A.N. Mill., Calyptosphaeria Réblová & A.N. Mill, Calyptosphaeria collapsa Réblová & A.N. Mill., Calyptosphaeria subdenudata (Peck) Réblová & A.N. Mill., Ceratostomella, Conidiogenesis, Holoblastic-denticulate, L. investita (Schw.) Réblová, L. obscura Réblová, L. striatella Réblová, L. sulcata Réblová, L. tenuirostris Réblová, Lentomitella conoidea (Feltg.) Réblová, Lentomitella magna Réblová, Molecular systematics, New taxa, Phaeoisaria-like, S. hyalostoma (Munk) Réblová, Selenosporella-like, Spadicoides fuscolutea (Rehm) Réblová, Spadicoides iberica (Hern.-Restr. et al.) Réblová & A.N. Mill., T. biatriispora (K.D. Hyde) Réblová & A.N. Mill., T. dubia (Sacc.) Réblová & A.N. Mill, T. novae-zelandiae Réblová & A.N. Mill, Taxonomy, Torrentispora aquatica (Vijaykr. et al.) Réblová & A.N. Mill., Torrentispora calembola Réblová & A.N. Mill., Tretic, Xenospadicoidales,
- Publication type
- Journal Article MeSH
Phylogenetic analyses of DNA sequences from nuclear ribosomal and protein-coding loci support the placement of several perithecial ascomycetes and dematiaceous hyphomycetes from freshwater and terrestrial environments in two monophyletic clades closely related to the Savoryellales. One clade formed by five species of Conioscypha and a second clade containing several genera of uncertain taxonomic status centred on Pleurothecium, represent two distinct taxonomic groups at the ordinal systematic rank. They are proposed as new orders, the Conioscyphales and Pleurotheciales. Several taxonomic novelties are introduced in the Pleurotheciales, i.e. two new genera (Adelosphaeria and Melanotrigonum), three novel species (A. catenata, M. ovale, Phaeoisaria fasciculata) and a new combination (Pleurotheciella uniseptata). A new combination is proposed for Savoryella limnetica in Ascotaiwania s.str. based on molecular data and culture characters. A strongly supported lineage containing a new genus Plagiascoma, species of Bactrodesmiastrum and Ascotaiwania persoonii, was identified as a sister to the Conioscyphales/Pleurotheciales/Savoryellales clade in our multilocus phylogeny. Together, they are nested in a monophyly in the Hypocreomycetidae, significantly supported by Bayesian inference and Maximum Likelihood analyses. Members of this clade share a few morphological characters, such as the absence of stromatic tissue or clypeus, similar anatomies of the 2-layered ascomatal walls, thin-walled unitunicate asci with a distinct, non-amyloid apical annulus, symmetrical, transversely septate ascospores and holoblastic conidiogenesis. They represent the only fungi in the Hypocreomycetidae with apically free, filiform to cylindrical, persistent or partially disintegrating paraphyses. The systematic placement of two other dematiaceous hyphomycetes was resolved based on DNA sequences; Phragmocephala stemphylioides is a member of the Pleurotheciales and Triadelphia uniseptata is within the Savoryellales.
- Keywords
- Hypocreomycetidae, Phaeoisaria, freshwater fungi, holoblastic conidiogenesis, multigene analysis, systematics,
- Publication type
- Journal Article MeSH
Rock-inhabiting fungi harbour species-rich, poorly differentiated, extremophilic taxa of polyphyletic origin. Their closest relatives are often well-known species from various biotopes with significant pathogenic potential. Speleothems represent a unique rock-dwelling habitat, whose mycobiota are largely unexplored. Isolation of fungi from speleothem biofilm covering bare granite walls in the Kungsträdgården metro station in Stockholm yielded axenic cultures of two distinct black yeast morphotypes. Phylogenetic analyses of DNA sequences from six nuclear loci, ITS, nuc18S and nuc28S rDNA, rpb1, rpb2 and β-tubulin, support their placement in the Chaetothyriales (Ascomycota). They are described as a new genus Bacillicladium with the type species B. lobatum, and a new species Bradymyces graniticola. Bacillicladium is distantly related to the known five chaetothyrialean families and is unique in the Chaetothyriales by variable morphology showing hyphal, meristematic and yeast-like growth in vitro. The nearest relatives of Bacillicladium are recruited among fungi isolated from cardboard-like construction material produced by arboricolous non-attine ants. Their sister relationship is weakly supported by the Maximum likelihood analysis, but strongly supported by Bayesian inference. The genus Bradymyces is placed amidst members of the Trichomeriaceae and is ecologically undefined; it includes an opportunistic animal pathogen while two other species inhabit rock surfaces. ITS rDNA sequences of three species accepted in Bradymyces and other undescribed species and environmental samples were subjected to phylogenetic analysis and in-depth comparative analysis of ITS1 and ITS2 secondary structures in order to study their intraspecific variability. Compensatory base change criterion in the ITS2 secondary structure supported delimitation of species in Bradymyces, which manifest a limited number of phenotypic features useful for species recognition. The role of fungi in the speleothem biofilm and relationships of Bacillicladium and Bradymyces with other members of the Chaetothyriales are discussed.
- MeSH
- Ascomycota classification genetics physiology MeSH
- Bayes Theorem MeSH
- Biofilms MeSH
- DNA, Fungal chemistry isolation & purification metabolism MeSH
- Ants microbiology MeSH
- Fungal Proteins genetics MeSH
- Phylogeny MeSH
- Nucleic Acid Conformation MeSH
- DNA, Ribosomal chemistry isolation & purification metabolism MeSH
- RNA Polymerase II genetics MeSH
- Base Sequence MeSH
- Sequence Alignment MeSH
- Tubulin genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Sweden MeSH
- Names of Substances
- DNA, Fungal MeSH
- Fungal Proteins MeSH
- DNA, Ribosomal MeSH
- RNA Polymerase II MeSH
- Tubulin MeSH
The Calosphaeriales is revisited with new collection data, living cultures, morphological studies of ascoma centrum, secondary structures of the internal transcribed spacer (ITS) rDNA and phylogeny based on novel DNA sequences of five nuclear ribosomal and protein-coding loci. Morphological features, molecular evidence and information from predicted RNA secondary structures of ITS converged upon robust phylogenies of the Calosphaeriales and Togniniales. The current concept of the Calosphaeriales includes the Calosphaeriaceae and Pleurostomataceae encompassing five monophyletic genera, Calosphaeria, Flabellascus gen. nov., Jattaea, Pleurostoma and Togniniella, strongly supported by Bayesian and Maximum Likelihood methods. The structural elements of ITS1 form characteristic patterns that are phylogenetically conserved, corroborate observations based on morphology and have a high predictive value at the generic level. Three major clades containing 44 species of Phaeoacremonium were recovered in the closely related Togniniales based on ITS, actin and β-tubulin sequences. They are newly characterized by sexual and RNA structural characters and ecology. This approach is a first step towards understanding of the molecular systematics of Phaeoacremonium and possibly its new classification. In the Calosphaeriales, Jattaea aphanospora sp. nov. and J. ribicola sp. nov. are introduced, Calosphaeria taediosa is combined in Jattaea and epitypified. The sexual morph of Phaeoacremonium cinereum was encountered for the first time on decaying wood and obtained in vitro. In order to achieve a single nomenclature, the genera of asexual morphs linked with the Calosphaeriales are transferred to synonymy of their sexual morphs following the principle of priority, i.e. Calosphaeriophora to Calosphaeria, Phaeocrella to Togniniella and Pleurostomophora to Pleurostoma. Three new combinations are proposed, i.e. Pleurostoma ochraceum comb. nov., P. repens comb. nov. and P. richardsiae comb. nov. The morphology-based key is provided to facilitate identification of genera accepted in the Calosphaeriales.
- MeSH
- Ascomycota classification genetics MeSH
- Bayes Theorem MeSH
- RNA, Fungal genetics MeSH
- Phylogeny * MeSH
- Genes, Fungal genetics MeSH
- Nucleic Acid Conformation MeSH
- DNA, Ribosomal Spacer chemistry genetics MeSH
- Evolution, Molecular MeSH
- Likelihood Functions MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Fungal MeSH
- DNA, Ribosomal Spacer MeSH
- RNA, Ribosomal, 16S MeSH
Thirteen morphologically similar strains of barbatosphaeria- and tectonidula-like fungi were studied based on the comparison of cultural and morphological features of sexual and asexual morphs and phylogenetic analyses of five nuclear loci, i.e. internal transcribed spacer rDNA operon (ITS), large and small subunit nuclear ribosomal DNA, β-tubulin, and second largest subunit of RNA polymerase II. Phylogenetic results were supported by in-depth comparative analyses of common core secondary structure of ITS1 and ITS2 in all strains and the identification of non-conserved, co-evolving nucleotides that maintain base pairing in the RNA transcript. Barbatosphaeria is defined as a well-supported monophyletic clade comprising several lineages and is placed in the Sordariomycetes incertae sedis. The genus is expanded to encompass nine species with both septate and non-septate ascospores in clavate, stipitate asci with a non-amyloid apical annulus and non-stromatic ascomata with a long decumbent neck and carbonised wall often covered by pubescence. The asexual morphs are dematiaceous hyphomycetes with holoblastic conidiogenesis belonging to Ramichloridium and Sporothrix types. The morphologically similar Tectonidula, represented by the type species T. hippocrepida, grouped with members of Barbatosphaeria and is transferred to that genus. Four new species are introduced and three new combinations in Barbatosphaeria are proposed. A dichotomous key to species accepted in the genus is provided.
- Keywords
- Ramichloridium, Sporothrix, Tectonidula, phylogenetics, sequence analysis, spacer regions,
- Publication type
- Journal Article MeSH