Nejvíce citovaný článek - PubMed ID 23827618
On the role of Nb-related sites of an oxidized β-TiNb alloy surface in its interaction with osteoblast-like MG-63 cells
We investigated the use of a supported silicalite-1 film (SF) as a promising coating for metallic materials used in the fabrication of prostheses. The role of carbonaceous residua present on high-temperature calcined-SF in generating singlet oxygen for future use as a sterilization method has also been addressed, and the potential genotoxicity of these residua in osteoblast-like cells has been investigated. Calcination of as-synthesized SF induced the appearance of a rather complicated mixture of aliphatic and aromatic species on its outer surface. A series of variously volatile polycyclic aromatic hydrocarbons (PAH), including naphthalene, fluorene, phenanthrene, anthracene, fluoranthene, and pyrene, were identified in micromole concentrations. Irradiation of these PAHs on calcined-SF immersed in air-saturated chloroform led to the formation of very low concentrations of singlet oxygen. However, an increased level of DNA damage was observed on calcined-SF by immunofluorescence staining of phosphorylated histone H2AX analyzed by flow cytometry.
- Klíčová slova
- genotoxicity, implant material, singlet oxygen, surface coating,
- Publikační typ
- časopisecké články MeSH
Thin films of binary C60/Ti composites, with various concentrations of Ti ranging from ~ 25% to ~ 70%, were deposited on microscopic glass coverslips and were tested for their potential use in bone tissue engineering as substrates for the adhesion and growth of bone cells. The novelty of this approach lies in the combination of Ti atoms (i.e., widely used biocompatible material for the construction of stomatological and orthopedic implants) with atoms of fullerene C60, which can act as very efficient radical scavengers. However, fullerenes and their derivatives are able to generate harmful reactive oxygen species and to have cytotoxic effects. In order to stabilize C60 molecules and to prevent their possible cytotoxic effects, deposition in the compact form of Ti/C60 composites (with various Ti concentrations) was chosen. The reactivity of C60/Ti composites may change in time due to the physicochemical changes of molecules in an air atmosphere. In this study, we therefore tested the dependence between the age of C60/Ti films (from one week to one year) and the adhesion, morphology, proliferation, viability, metabolic activity and potential DNA damage to human osteosarcoma cells (lines MG-63 and U-2 OS). After 7 days of cultivation, we did not observe any negative influence of fresh or aged C60/Ti layers on cell behavior, including the DNA damage response. The presence of Ti atoms resulted in improved properties of the C60 layers, which became more suitable for cell cultivation.
- MeSH
- buněčná adheze účinky léků MeSH
- časové faktory MeSH
- fullereny chemie farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- osteoblasty cytologie účinky léků metabolismus MeSH
- poškození DNA MeSH
- proliferace buněk účinky léků MeSH
- reaktivní formy kyslíku antagonisté a inhibitory metabolismus MeSH
- titan chemie farmakologie MeSH
- tkáňové inženýrství MeSH
- tkáňové podpůrné struktury * MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fullerene C60 MeSH Prohlížeč
- fullereny MeSH
- reaktivní formy kyslíku MeSH
- titan MeSH
An investigation was made of the adhesion, growth and differentiation of osteoblast-like MG-63 and Saos-2 cells on titanium (Ti) and niobium (Nb) supports and on TiNb alloy with surfaces oxidized at 165°C under hydrothermal conditions and at 600°C in a stream of air. The oxidation mode and the chemical composition of the samples tuned the morphology, topography and distribution of the charge on their surfaces, which enabled us to evaluate the importance of these material characteristics in the interaction of the cells with the sample surface. Numbers of adhered MG-63 and Saos-2 cells correlated with the number of positively-charged (related with the Nb2O5 phase) and negatively-charged sites (related with the TiO2 phase) on the alloy surface. Proliferation of these cells is correlated with the presence of positively-charged (i.e. basic) sites of the Nb2O5 alloy phase, while cell differentiation is correlated with negatively-charged (acidic) sites of the TiO2 alloy phase. The number of charged sites and adhered cells was substantially higher on the alloy sample oxidized at 600°C than on the hydrothermally treated sample at 165°C. The expression values of osteoblast differentiation markers (collagen type I and osteocalcin) were higher for cells grown on the Ti samples than for those grown on the TiNb samples. This was more particularly apparent in the samples treated at 165°C. No considerable immune activation of murine macrophage-like RAW 264.7 cells on the tested samples was found. The secretion of TNF-α by these cells into the cell culture media was much lower than for either cells grown in the presence of bacterial lipopolysaccharide, or untreated control samples. Thus, oxidized Ti and TiNb are both promising materials for bone implantation; TiNb for applications where bone cell proliferation is desirable, and Ti for induction of osteogenic cell differentiation.
- MeSH
- biologické markery metabolismus MeSH
- buněčná adheze účinky léků MeSH
- buněčná diferenciace účinky léků MeSH
- buněčné linie MeSH
- kolagen typu I metabolismus MeSH
- lidé MeSH
- lipopolysacharidy farmakologie MeSH
- makrofágy cytologie účinky léků metabolismus MeSH
- myši MeSH
- osteoblasty cytologie účinky léků metabolismus MeSH
- osteokalcin metabolismus MeSH
- oxidace-redukce MeSH
- povrchové vlastnosti MeSH
- proliferace buněk účinky léků MeSH
- slitiny chemie farmakologie MeSH
- statická elektřina MeSH
- tkáňové podpůrné struktury * MeSH
- TNF-alfa farmakologie MeSH
- vysoká teplota MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- kolagen typu I MeSH
- lipopolysacharidy MeSH
- osteokalcin MeSH
- slitiny MeSH
- titanium-niobium alloy MeSH Prohlížeč
- TNF-alfa MeSH
Fullerenes are nanoparticles composed of carbon atoms arranged in a spherical hollow cage-like structure. Numerous studies have evaluated the therapeutic potential of fullerene derivates against oxidative stress-associated conditions, including the prevention or treatment of arthritis. On the other hand, fullerenes are not only able to quench, but also to generate harmful reactive oxygen species. The reactivity of fullerenes may change in time due to the oxidation and polymerization of fullerenes in an air atmosphere. In this study, we therefore tested the dependence between the age of fullerene films (from one week to one year) and the proliferation, viability and metabolic activity of human osteosarcoma cells (lines MG-63 and U-2 OS). We also monitored potential membrane and DNA damage and morphological changes of the cells. After seven days of cultivation, we did not observe any cytotoxic morphological changes, such as enlarged cells or cytosolic vacuole formation. Furthermore, there was no increased level of DNA damage. The increasing age of the fullerene films did not cause enhancement of cytotoxicity. On the contrary, it resulted in an improvement in the properties of these materials, which are more suitable for cell cultivation. Therefore, fullerene films could be considered as a promising material with potential use as a bioactive coating of cell carriers for bone tissue engineering.
- MeSH
- buněčná adheze účinky léků MeSH
- fluorescenční protilátková technika MeSH
- fotoelektronová spektroskopie MeSH
- fullereny farmakologie MeSH
- hydrofobní a hydrofilní interakce účinky léků MeSH
- kosti a kostní tkáň cytologie MeSH
- lidé MeSH
- mikroskopie atomárních sil MeSH
- nádorové buněčné linie MeSH
- osteoblasty cytologie účinky léků MeSH
- poškození DNA MeSH
- povrchové vlastnosti MeSH
- proliferace buněk účinky léků MeSH
- průtoková cytometrie MeSH
- Ramanova spektroskopie MeSH
- tvar buňky účinky léků MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fullerene C60 MeSH Prohlížeč
- fullereny MeSH