Nejvíce citovaný článek - PubMed ID 24002908
BACKGROUND: Oocytes of large animal species isolated from small ovarian follicles (< 2 mm) are less competent to support early embryonic development after in vitro maturation and fertilization than their counterparts isolated from medium-sized and preovulatory follicles. This study aimed to assess the effect of a new maturation medium containing FGF2, LIF, and IGF1 (FLI medium) on the meiotic and developmental competence of pig cumulus-oocytes complexes (COCs) derived from the small and medium-sized follicles. METHODS: The growing oocytes were isolated from 1 to 2 (small follicle; SF) and the fully-grown ones from 3 to 6 (large follicle; LF) mm follicles and matured in a control M199 medium with gonadotropins and EGF and the FLI medium enriched by the triplet of growth factors. The matured oocytes were parthenogenetically activated and cultured to the blastocyst stage. Chromatin configuration before and during the culture and MAP kinase activity were assessed in the oocytes. Finally, the expression of cumulus cell genes previously identified as markers of oocyte quality was assessed. RESULTS: The maturation and blastocyst rates of oocytes gained from LF were significantly higher than that from SF in the control medium. In contrast, similar proportions of oocytes from LF and SF completed meiosis and developed to blastocysts when cultured in FLI. Most of the oocytes freshly isolated from SF possessed germinal vesicles with fine filaments of chromatin (GV0) or chromatin surrounding the nucleolus (GVI; 30%); the oocytes from LF were mainly in GVI (or GVII) exhibiting a few small lumps of chromatin beneath the nuclear membrane. When cultured in the FLI medium for 16 h, an acceleration of the course of maturation in oocytes both from SF and LF compared to the control medium was observed and a remarkable synchrony in the course of chromatin remodeling was noticed in oocytes from SF and LF. CONCLUSIONS: This work demonstrates that the enrichment of culture medium by FGF2, LIF, and IGF1 can enhance the meiotic and developmental competence of not only fully-grown, but also growing pig oocytes and significantly thus expanding the number of oocytes available for various assisted reproductive technology applications.
- Klíčová slova
- Chromatin configuration, Developmental potential, Follicle size, Gene expression, Growth factors, MAPK activation, Oocyte maturation,
- MeSH
- chromatin metabolismus MeSH
- fibroblastový růstový faktor 2 * farmakologie metabolismus MeSH
- IVM techniky * MeSH
- meióza MeSH
- oocyty metabolismus MeSH
- ovariální folikul MeSH
- prasata MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chromatin MeSH
- fibroblastový růstový faktor 2 * MeSH
The disease progression of neurodegenerative disorders (NDD), including Alzheimer's, Parkinson's and Huntington's disease, is inextricably tied to mitochondrial dysfunction. However, although the contribution by nuclear gene mutations is recognised for familial onset of NDD, the degree to which cytoplasmic inheritance serves as a predetermining factor for the predisposition and onset of NDD is not yet fully understood. We review the reproductive mechanisms responsible for ensuring a healthy mitochondrial population within each new generation and elucidate how advanced maternal age can constitute an increased risk for the onset of NDD in the offspring, through the increased heteroplasmic burden. On the one hand, this review draws attention to how assisted reproductive technologies (ART) can impair mitochondrial fitness in offspring. On the other hand, we consider qualified ART approaches as a significant tool for the prevention of NDD pathogenesis.
- MeSH
- cvičení MeSH
- lidé MeSH
- mitochondrie genetika MeSH
- neurodegenerativní nemoci * genetika MeSH
- progrese nemoci MeSH
- rozmnožování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Tens of thousands of rapidly evolving long non-coding RNA (lncRNA) genes have been identified, but functions were assigned to relatively few of them. The lncRNA contribution to the mouse oocyte physiology remains unknown. We report the evolutionary history and functional analysis of Sirena1, the most expressed lncRNA and the 10th most abundant poly(A) transcript in mouse oocytes. Sirena1 appeared in the common ancestor of mouse and rat and became engaged in two different post-transcriptional regulations. First, antisense oriented Elob pseudogene insertion into Sirena1 exon 1 is a source of small RNAs targeting Elob mRNA via RNA interference. Second, Sirena1 evolved functional cytoplasmic polyadenylation elements, an unexpected feature borrowed from translation control of specific maternal mRNAs. Sirena1 knock-out does not affect fertility, but causes minor dysregulation of the maternal transcriptome. This includes increased levels of Elob and mitochondrial mRNAs. Mitochondria in Sirena1-/- oocytes disperse from the perinuclear compartment, but do not change in number or ultrastructure. Taken together, Sirena1 contributes to RNA interference and mitochondrial aggregation in mouse oocytes. Sirena1 exemplifies how lncRNAs stochastically engage or even repurpose molecular mechanisms during evolution. Simultaneously, Sirena1 expression levels and unique functional features contrast with the lack of functional importance assessed under laboratory conditions.
- MeSH
- genový knockout MeSH
- krysa rodu Rattus MeSH
- messenger RNA genetika MeSH
- mitochondrie genetika ultrastruktura MeSH
- myši MeSH
- oocyty růst a vývoj metabolismus ultrastruktura MeSH
- polyadenylace genetika MeSH
- RNA dlouhá nekódující genetika MeSH
- RNA mitochondriální genetika MeSH
- transkriptom genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- mitochondrial messenger RNA MeSH Prohlížeč
- RNA dlouhá nekódující MeSH
- RNA mitochondriální MeSH
Granulosa cells (GCs) are somatic cells essential for establishing and maintaining bi-directional communication with the oocytes. This connection has a profound importance for the delivery of energy substrates, structural components and ions to the maturing oocyte through gap junctions. Cumulus cells, group of closely associated GCs, surround the oocyte and can diminished the effect of harmful environmental insults. Both GCs and oocytes prefer different energy substrates in their cellular metabolism: GCs are more glycolytic, whereas oocytes rely more on oxidative phosphorylation pathway. The interconnection of these cells is emphasized by the fact that GCs supply oocytes with intermediates produced in glycolysis. The number of GCs surrounding the oocyte and their age affect the energy status of oocytes. This review summarises available studies collaboration of cellular types in the ovarian follicle from the point of view of energy metabolism, signaling and protection of toxic insults. A deeper knowledge of the underlying mechanisms is crucial for better methods to prevent and treat infertility and to improve the technology of in vitro fertilization.
- MeSH
- antioxidancia metabolismus MeSH
- energetický metabolismus MeSH
- folikulární buňky účinky léků metabolismus MeSH
- lidé MeSH
- metabolismus lipidů MeSH
- metabolismus sacharidů MeSH
- nebezpečné látky toxicita MeSH
- oocyty růst a vývoj metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia MeSH
- nebezpečné látky MeSH
- reaktivní formy kyslíku MeSH