Most cited article - PubMed ID 24007621
Diversity of chlorobiphenyl-metabolizing bacteria and their biphenyl dioxygenases in contaminated sediment
Polychlorinated biphenyl (PCB)-contaminated soils represent a major treat for ecosystems health. Plant biostimulation of autochthonous microbial PCB degraders is a way to restore polluted sites where traditional remediation techniques are not sustainable, though its success requires the understanding of site-specific plant-microbe interactions. In an historical PCB contaminated soil, we applied DNA stable isotope probing (SIP) using 13C-labeled 4-chlorobiphenyl (4-CB) and 16S rRNA MiSeq amplicon sequencing to determine how the structure of total and PCB-degrading bacterial populations were affected by different treatments: biostimulation with Phalaris arundinacea subjected (PhalRed) or not (Phal) to a redox cycle and the non-planted controls (Bulk and BulkRed). Phal soils hosted the most diverse community and plant biostimulation induced an enrichment of Actinobacteria. Mineralization of 4-CB in SIP microcosms varied between 10% in Bulk and 39% in PhalRed soil. The most abundant taxa deriving carbon from PCB were Betaproteobacteria and Actinobacteria. Comamonadaceae was the family most represented in Phal soils, Rhodocyclaceae and Nocardiaceae in non-planted soils. Planted soils subjected to redox cycle enriched PCB degraders affiliated to Pseudonocardiaceae, Micromonosporaceae and Nocardioidaceae. Overall, we demonstrated different responses of soil bacterial taxa to specific rhizoremediation treatments and we provided new insights into the populations active in PCB biodegradation.
- MeSH
- Actinomycetales * genetics MeSH
- Bacteria MeSH
- Biodegradation, Environmental MeSH
- DNA, Bacterial genetics metabolism MeSH
- DNA metabolism MeSH
- Ecosystem MeSH
- Isotopes metabolism MeSH
- Soil Pollutants * metabolism MeSH
- Polychlorinated Biphenyls * metabolism MeSH
- Soil chemistry MeSH
- Soil Microbiology MeSH
- RNA, Ribosomal, 16S genetics metabolism MeSH
- Plants metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Bacterial MeSH
- DNA MeSH
- Isotopes MeSH
- Soil Pollutants * MeSH
- Polychlorinated Biphenyls * MeSH
- Soil MeSH
- RNA, Ribosomal, 16S MeSH
Certain industrial chemicals accumulate in the environment due to their recalcitrant properties. Bioremediation uses the capability of some environmental bacteria to break down these chemicals and attenuate the pollution. One such bacterial strain, designated Pvy, was isolated from sediment samples from a lagoon in Romania located near an oil refinery due to its capacity to degrade dibenzofuran (DF). The genome sequence of the Pvy strain was obtained using an Oxford Nanopore MiniION platform. According to the consensus 16S rRNA gene sequence that was compiled from six 16S rRNA gene copies contained in the genome and orthologous average nucleotide identity (OrthoANI) calculation, the Pvy strain was identified as Pseudomonas veronii, which confirmed the identification obtained with the aid of MALDI-TOF mass spectrometry and MALDI BioTyper. The genome was analyzed with respect to enzymes responsible for the overall biodegradative versatility of the strain. The Pvy strain was able to derive carbon from naphthalene (NP) and several aromatic compounds of natural origin, including salicylic, protocatechuic, p-hydroxybenzoic, trans-cinnamic, vanillic, and indoleacetic acids or vanillin, and was shown to degrade but not utilize DF. In total seven loci were found in the Pvy genome, which enables the strain to participate in the degradation of these aromatic compounds. Our experimental data also indicate that the transcription of the NP-dioxygenase α-subunit gene (ndoB), carried by the plasmid of the Pvy strain, is inducible by DF. These features make the Pvy strain a potential candidate for various bioremediation applications.
- Keywords
- Pseudomonas veronii strain Pvy, biodegradation, denitrification, dibenzofuran, dioxygenase, heavy-metal tolerance, nanopore technology, organic phosphate mineralization, whole-genome sequencing,
- MeSH
- Biodegradation, Environmental MeSH
- Dibenzofurans * MeSH
- Genomics * MeSH
- Pseudomonas MeSH
- RNA, Ribosomal, 16S MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Dibenzofurans * MeSH
- RNA, Ribosomal, 16S MeSH
Aerobic mineralization of PCBs, which are toxic and persistent organic pollutants, involves the upper (biphenyl, BP) and lower (benzoate, BZ) degradation pathways. The activity of different members of the soil microbial community in performing one or both pathways, and their synergistic interactions during PCB biodegradation, are not well understood. This study investigates BP and BZ biodegradation and subsequent carbon flow through the microbial community in PCB-contaminated soil. DNA stable isotope probing (SIP) was used to identify the bacterial guilds involved in utilizing (13)C-biphenyl (unchlorinated analogue of PCBs) and/or (13)C-benzoate (product/intermediate of BP degradation and analogue of chlorobenzoates). By performing SIP with two substrates in parallel, we reveal microbes performing the upper (BP) and/or lower (BZ) degradation pathways, and heterotrophic bacteria involved indirectly in processing carbon derived from these substrates (i.e. through crossfeeding). Substrate mineralization rates and shifts in relative abundance of labeled taxa suggest that BP and BZ biotransformations were performed by microorganisms with different growth strategies: BZ-associated bacteria were fast growing, potentially copiotrophic organisms, while microbes that transform BP were oligotrophic, slower growing, organisms. Our findings provide novel insight into the functional interactions of soil bacteria active in processing biphenyl and related aromatic compounds in soil, revealing how carbon flows through a bacterial community.
- MeSH
- Hydrocarbons, Aromatic metabolism MeSH
- Bacteria genetics metabolism MeSH
- Benzoates metabolism MeSH
- Biphenyl Compounds metabolism MeSH
- Biodegradation, Environmental MeSH
- Soil Pollutants metabolism MeSH
- Hazardous Waste MeSH
- Polychlorinated Biphenyls metabolism MeSH
- Soil chemistry MeSH
- Soil Microbiology * MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Environmental Pollution * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Hydrocarbons, Aromatic MeSH
- Benzoates MeSH
- Biphenyl Compounds MeSH
- biphenyl MeSH Browser
- Soil Pollutants MeSH
- Hazardous Waste MeSH
- Polychlorinated Biphenyls MeSH
- Soil MeSH
- RNA, Ribosomal, 16S MeSH
Given that the degradation of aromatic pollutants in anaerobic environments such as sediment is generally very slow, aeration could be an efficient bioremediation option. Using stable isotope probing (SIP) coupled with pyrosequencing analysis of 16S rRNA genes, we identified naphthalene-utilizing populations in aerated polyaromatic hydrocarbon (PAH)-polluted sediment. The results showed that naphthalene was metabolized at both 10 and 20°C following oxygen delivery, with increased degradation at 20°C as compared to 10°C-a temperature more similar to that found in situ. Naphthalene-derived (13)C was primarily assimilated by pseudomonads. Additionally, Stenotrophomonas, Acidovorax, Comamonas, and other minor taxa were determined to incorporate (13)C throughout the measured time course. The majority of SIP-detected bacteria were also isolated in pure cultures, which facilitated more reliable identification of naphthalene-utilizing populations as well as proper differentiation between primary consumers and cross-feeders. The pseudomonads acquiring the majority of carbon were identified as Pseudomonas veronii and Pseudomonas gessardii. Stenotrophomonads and Acidovorax defluvii, however, were identified as cross-feeders unable to directly utilize naphthalene as a growth substrate. PAH degradation assays with the isolated bacteria revealed that all pseudomonads as well as Comamonas testosteroni degraded acenaphthene, fluorene, and phenanthrene in addition to naphthalene. Furthermore, P. veronii and C. testosteroni were capable of transforming anthracene, fluoranthene, and pyrene. Screening of isolates for naphthalene dioxygenase genes using a set of in-house designed primers for Gram-negative bacteria revealed the presence of such genes in pseudomonads and C. testosteroni. Overall, our results indicated an apparent dominance of pseudomonads in the sequestration of carbon from naphthalene and potential degradation of other PAHs upon aeration of the sediment at both 20 and 10°C.
- Keywords
- Comamonas testosteroni, Pseudomonas gessardii, Pseudomonas veronii, biodegradation, dioxygenase, naphthalene, polyaromatic hydrocarbons, stable isotope probing,
- Publication type
- Journal Article MeSH