Most cited article - PubMed ID 24091083
Serum matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels in patients with tick-borne encephalitis
Matrix metalloproteinases (MMPs) play an important role in central nervous system infections. We analysed the levels of 8 different MMPs in the cerebrospinal fluid (CSF) of 89 adult patients infected with tick-borne encephalitis (TBE) virus and compared them with the levels in a control group. MMP-9 was the only MMP that showed significantly increased CSF levels in TBE patients. Serum MMP-9 levels were subsequently measured in 101 adult TBE patients at various time points during the neurological phase of TBE and at follow-up. In addition, serum MMP-9 was analysed in 37 paediatric TBE patients. Compared with control levels, both paediatric and adult TBE patients had significantly elevated serum MMP-9 levels. In most adult patients, serum MMP-9 levels peaked at hospital admission, with higher serum MMP-9 levels observed in patients with encephalitis than in patients with meningitis. Elevated serum MMP-9 levels were observed throughout hospitalisation but decreased to normal levels at follow-up. Serum MMP-9 levels correlated with clinical course, especially in patients heterozygous for the single-nucleotide polymorphism rs17576 (A/G; Gln279Arg) in the MMP9 gene. The results highlight the importance of MMP-9 in the pathogenesis of TBE and suggest that serum MMP-9 may serve as a promising bioindicator of TBE in both paediatric and adult TBE patients.
- Keywords
- Cerebrospinal fluid, Matrix matalloproteinase, Neuroinfection, Tick-borne encephalitis,
- MeSH
- Biomarkers MeSH
- Child MeSH
- Adult MeSH
- Polymorphism, Single Nucleotide MeSH
- Encephalitis, Tick-Borne * diagnosis cerebrospinal fluid MeSH
- Humans MeSH
- Matrix Metalloproteinase 9 genetics MeSH
- Encephalitis Viruses, Tick-Borne * genetics MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
- Matrix Metalloproteinase 9 MeSH
- MMP9 protein, human MeSH Browser
The aim of this review is to follow the history of studies on endemiv arboviruses and the diseases they cause which were detected in the Czech lands (Bohemia, Moravia and Silesia (i.e., the Czech Republic)). The viruses involve tick-borne encephalitis, West Nile and Usutu flaviviruses; the Sindbis alphavirus; Ťahyňa, Batai, Lednice and Sedlec bunyaviruses; the Uukuniemi phlebovirus; and the Tribeč orbivirus. Arboviruses temporarily imported from abroad to the Czech Republic have been omitted. This brief historical review includes a bibliography of all relevant papers.
- Keywords
- arthropods, birds, mammals, mosquitoes, ticks,
- MeSH
- Arbovirus Infections history MeSH
- Arboviruses physiology MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- Humans MeSH
- Animals MeSH
- Check Tag
- History, 20th Century MeSH
- History, 21st Century MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Review MeSH
- Geographicals
- Czech Republic epidemiology MeSH
Tick-borne encephalitis virus (TBEV) causes serious, potentially fatal neurological infections that affect humans in endemic regions of Europe and Asia. Neurons are the primary target for TBEV infection in the central nervous system. However, knowledge about this viral infection and virus-induced neuronal injury is fragmental. Here, we directly examined the pathology that occurs after TBEV infection in human primary neurons. We exploited the advantages of advanced high-pressure freezing and freeze-substitution techniques to achieve optimal preservation of infected cell architecture. Electron tomographic (ET) reconstructions elucidated high-resolution 3D images of the proliferating endoplasmic reticulum, and individual tubule-like structures of different diameters in the endoplasmic reticulum cisternae of single cells. ET revealed direct connections between the tubule-like structures and viral particles in the endoplasmic reticulum. Furthermore, ET showed connections between cellular microtubules and vacuoles that harbored the TBEV virions in neuronal extensions. This study was the first to characterize the 3D topographical organization of membranous whorls and autophagic vacuoles in TBEV-infected human neurons. The functional importance of autophagy during TBEV replication was studied in human neuroblastoma cells; stimulation of autophagy resulted in significantly increased dose-dependent TBEV production, whereas the inhibition of autophagy showed a profound, dose-dependent decrease of the yield of infectious virus.
- MeSH
- Autophagy drug effects genetics MeSH
- Benzylamines pharmacology MeSH
- Quinazolines pharmacology MeSH
- Endoplasmic Reticulum drug effects ultrastructure virology MeSH
- Humans MeSH
- Microtubules drug effects ultrastructure virology MeSH
- Cell Line, Tumor MeSH
- Neurons drug effects ultrastructure virology MeSH
- Nocodazole pharmacology MeSH
- Primary Cell Culture MeSH
- Virus Replication drug effects MeSH
- Sirolimus pharmacology MeSH
- Electron Microscope Tomography MeSH
- Virion drug effects growth & development ultrastructure MeSH
- Encephalitis Viruses, Tick-Borne drug effects growth & development ultrastructure MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Benzylamines MeSH
- Quinazolines MeSH
- Nocodazole MeSH
- Sirolimus MeSH
- spautin-1 MeSH Browser