Nejvíce citovaný článek - PubMed ID 24351816
Effect of ion concentration changes in the limited extracellular spaces on sarcolemmal ion transport and Ca2+ turnover in a model of human ventricular cardiomyocyte
The transverse-axial tubular system (t-tubules) plays an essential role in excitation-contraction coupling in cardiomyocytes. Its remodelling is associated with various cardiac diseases. Numerous attempts were made to analyse characteristics essential for proper understanding of the t-tubules and their impact on cardiac cell function in health and disease. The currently available methodical approaches related to the fraction of the t-tubular membrane area produce diverse data. The widely used detubulation techniques cause irreversible cell impairment, thus, distinct cell samples have to be used for estimation of t-tubular parameters in untreated and detubulated cells. Our proposed alternative method is reversible and allows repetitive estimation of the fraction of t-tubular membrane (f t) in cardiomyocytes using short-term perfusion of the measured cell with a low-conductive isotonic sucrose solution. It results in a substantial increase in the electrical resistance of t-tubular lumen, thus, electrically separating the surface and t-tubular membranes. Using the whole-cell patch-clamp measurement and the new approach in enzymatically isolated rat atrial and ventricular myocytes, a set of data was measured and evaluated. The analysis of the electrical equivalent circuit resulted in the establishment of criteria for excluding measurements in which perfusion with a low conductivity solution did not affect the entire cell surface. As expected, the final average f t in ventricular myocytes (0.337 ± 0.017) was significantly higher than that in atrial myocytes (0.144 ± 0.015). The parameter f t could be estimated repetitively in a particular cell (0.345 ± 0.021 and 0.347 ± 0.023 in ventricular myocytes during the first and second sucrose perfusion, respectively). The new method is fast, simple, and leaves the measured cell intact. It can be applied in the course of experiments for which it is useful to estimate both the surface and t-tubular capacitance/area in a particular cell.
- Klíčová slova
- detubulation, membrane capacitance, new method, rat cardiomyocytes, sucrose, t-tubules,
- Publikační typ
- časopisecké články MeSH
The variant c.926C > T (p.T309I) in KCNQ1 gene was identified in 10 putatively unrelated Czech families with long QT syndrome (LQTS). Mutation carriers (24 heterozygous individuals) were more symptomatic compared to their non-affected relatives (17 individuals). The carriers showed a mild LQTS phenotype including a longer QTc interval at rest (466 ± 24 ms vs. 418 ± 20 ms) and after exercise (508 ± 32 ms vs. 417 ± 24 ms), 4 syncopes and 2 aborted cardiac arrests. The same haplotype associated with the c.926C > T variant was identified in all probands. Using the whole cell patch clamp technique and confocal microscopy, a complete loss of channel function was revealed in the homozygous setting, caused by an impaired channel trafficking. Dominant negativity with preserved reactivity to β-adrenergic stimulation was apparent in the heterozygous setting. In simulations on a human ventricular cell model, the dysfunction resulted in delayed afterdepolarizations (DADs) and premature action potentials under β-adrenergic stimulation that could be prevented by a slight inhibition of calcium current. We conclude that the KCNQ1 variant c.926C > T is the first identified LQTS-related founder mutation in Central Europe. The dominant negative channel dysfunction may lead to DADs under β-adrenergic stimulation. Inhibition of calcium current could be possible therapeutic strategy in LQTS1 patients refractory to β-blocker therapy.
- MeSH
- beta blokátory aplikace a dávkování škodlivé účinky MeSH
- detekce genetických nosičů MeSH
- dospělí MeSH
- draslíkový kanál KCNQ1 genetika MeSH
- fenotyp MeSH
- genetická predispozice k nemoci * MeSH
- genetické asociační studie MeSH
- genotyp MeSH
- haplotypy genetika MeSH
- heterozygot MeSH
- homozygot MeSH
- lidé MeSH
- mutace genetika MeSH
- rodokmen MeSH
- syndrom dlouhého QT genetika patologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- beta blokátory MeSH
- draslíkový kanál KCNQ1 MeSH
- KCNQ1 protein, human MeSH Prohlížeč
Inward rectifier potassium currents (I Kir,x) belong to prominent ionic currents affecting both resting membrane voltage and action potential repolarization in cardiomyocytes. In existing integrative models of electrical activity of cardiac cells, they have been described as single current components. The proposed quantitative model complies with findings indicating that these channels are formed by various homomeric or heteromeric assemblies of channel subunits with specific functional properties. Each I Kir,x may be expressed as a total of independent currents via individual populations of identical channels, i.e., channels formed by the same combination of their subunits. Solution of the model equations simulated well recently observed unique manifestations of dual ethanol effect in rat ventricular and atrial cells. The model reflects reported occurrence of at least two binding sites for ethanol within I Kir,x channels related to slow allosteric conformation changes governing channel conductance and inducing current activation or inhibition. Our new model may considerably improve the existing models of cardiac cells by including the model equations proposed here in the particular case of the voltage-independent drug-channel interaction. Such improved integrative models may provide more precise and, thus, more physiologically relevant results.
- Klíčová slova
- Cardiomyocytes, Dual effect, Ethanol, I K1, Inward rectifier potassium currents, Quantitative model,
- MeSH
- akční potenciály * MeSH
- alosterická regulace MeSH
- draslíkové kanály dovnitř usměrňující chemie metabolismus MeSH
- ethanol farmakologie MeSH
- kardiomyocyty účinky léků metabolismus fyziologie MeSH
- krysa rodu Rattus MeSH
- modely kardiovaskulární MeSH
- multimerizace proteinu MeSH
- srdce - funkce komor MeSH
- srdeční komory cytologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- draslíkové kanály dovnitř usměrňující MeSH
- ethanol MeSH