Nejvíce citovaný článek - PubMed ID 24423867
Structural integrity of the PCI domain of eIF3a/TIF32 is required for mRNA recruitment to the 43S pre-initiation complexes
Activating transcription factor 4 (ATF4) is a master transcriptional regulator of the integrated stress response, leading cells toward adaptation or death. ATF4's induction under stress was thought to be due to delayed translation reinitiation, where the reinitiation-permissive upstream open reading frame 1 (uORF1) plays a key role. Accumulating evidence challenging this mechanism as the sole source of ATF4 translation control prompted us to investigate additional regulatory routes. We identified a highly conserved stem-loop in the uORF2/ATF4 overlap, immediately preceded by a near-cognate CUG, which introduces another layer of regulation in the form of ribosome queuing. These elements explain how the inhibitory uORF2 can be translated under stress, confirming prior observations but contradicting the original regulatory model. We also identified two highly conserved, potentially modified adenines performing antagonistic roles. Finally, we demonstrated that the canonical ATF4 translation start site is substantially leaky scanned. Thus, ATF4's translational control is more complex than originally described, underpinning its key role in diverse biological processes.
- Klíčová slova
- ATF4, CP: Molecular biology, integrated stress response, ribosome, ribosome queuing, translation reinitiation, translational control, unfolded protein response,
- MeSH
- fyziologický stres MeSH
- HEK293 buňky MeSH
- lidé MeSH
- otevřené čtecí rámce * genetika MeSH
- proteosyntéza * MeSH
- ribozomy * metabolismus MeSH
- sekvence nukleotidů MeSH
- transkripční faktor ATF4 * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ATF4 protein, human MeSH Prohlížeč
- transkripční faktor ATF4 * MeSH
Regulation of translation via stop codon readthrough (SC-RT) expands not only tissue-specific but also viral proteomes in humans and, therefore, represents an important subject of study. Understanding this mechanism and all involved players is critical also from a point of view of prospective medical therapies of hereditary diseases caused by a premature termination codon. tRNAs were considered for a long time to be just passive players delivering amino acid residues according to the genetic code to ribosomes without any active regulatory roles. In contrast, our recent yeast work identified several endogenous tRNAs implicated in the regulation of SC-RT. Swiftly emerging studies of human tRNA-ome also advocate that tRNAs have unprecedented regulatory potential. Here, we developed a universal U6 promotor-based system expressing various human endogenous tRNA iso-decoders to study consequences of their increased dosage on SC-RT employing various reporter systems in vivo. This system combined with siRNA-mediated downregulations of selected aminoacyl-tRNA synthetases demonstrated that changing levels of human tryptophan and tyrosine tRNAs do modulate efficiency of SC-RT. Overall, our results suggest that tissue-to-tissue specific levels of selected near-cognate tRNAs may have a vital potential to fine-tune the final landscape of the human proteome, as well as that of its viral pathogens.
- MeSH
- buněčné linie MeSH
- lidé MeSH
- mutace MeSH
- nádorový supresorový protein p53 biosyntéza genetika MeSH
- plazmidy genetika MeSH
- promotorové oblasti (genetika) MeSH
- proteiny genetika MeSH
- proteosyntéza * MeSH
- reportérové geny MeSH
- RNA malá jaderná genetika MeSH
- RNA transferová Trp genetika metabolismus MeSH
- RNA transferová Tyr genetika metabolismus MeSH
- terminační kodon * MeSH
- tryptofan-tRNA-ligasa genetika MeSH
- tyrosin-tRNA-ligasa genetika MeSH
- virové proteiny genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nádorový supresorový protein p53 MeSH
- proteiny MeSH
- RNA malá jaderná MeSH
- RNA transferová Trp MeSH
- RNA transferová Tyr MeSH
- terminační kodon * MeSH
- tryptofan-tRNA-ligasa MeSH
- tyrosin-tRNA-ligasa MeSH
- U6 small nuclear RNA MeSH Prohlížeč
- virové proteiny MeSH
Stress granules (SGs) are membrane-less assemblies arising upon various stresses in eukaryotic cells. They sequester mRNAs and proteins from stressful conditions and modulate gene expression to enable cells to resume translation and growth after stress relief. SGs containing the translation initiation factor eIF3a/Rpg1 arise in yeast cells upon robust heat shock (HS) at 46 °C only. We demonstrate that the destabilization of Rpg1 within the PCI domain in the Rpg1-3 variant leads to SGs assembly already at moderate HS at 42 °C. These are bona fide SGs arising upon translation arrest containing mRNAs, which are components of the translation machinery, and associating with P-bodies. HS SGs associate with endoplasmatic reticulum and mitochondria and their contact sites ERMES. Although Rpg1-3-labeled SGs arise at a lower temperature, their disassembly is delayed after HS at 46 °C. Remarkably, the delayed disassembly of HS SGs after the robust HS is reversed by TDP-43, which is a human protein connected with amyotrophic lateral sclerosis. TDP-43 colocalizes with HS SGs in yeast cells and facilitates cell regrowth after the stress relief. Based on our results, we propose yeast HS SGs labeled by Rpg1 and its variants as a novel model system to study functions of TDP-43 in stress granules disassembly.
- Klíčová slova
- ER, ERMES, Hsp104, Rpg1, TDP-43, eIF3, heat shock, mitochondria, stress granules, yeast,
- MeSH
- cytoplazmatická granula fyziologie MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- eukaryotický iniciační faktor 3 chemie genetika metabolismus MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- mitochondrie metabolismus MeSH
- reakce na tepelný šok * MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika růst a vývoj metabolismus MeSH
- stabilita proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- EIF3A protein, human MeSH Prohlížeč
- eukaryotický iniciační faktor 3 MeSH
- messenger RNA MeSH
- RPG1 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
- TARDBP protein, human MeSH Prohlížeč
One of the key roles of the 12-subunit eukaryotic translation initiation factor 3 (eIF3) is to promote the formation of the 43S and 48S pre-initiation complexes (PICs). However, particular contributions of its individual subunits to these two critical initiation reactions remained obscure. Here, we adapted formaldehyde gradient cross-linking protocol to translation studies and investigated the efficiency of the 43S and 48S PIC assembly in knockdowns of individual subunits of human eIF3 known to produce various partial subcomplexes. We revealed that eIF3d constitutes an important intermolecular bridge between eIF3 and the 40S subunit as its elimination from the eIF3 holocomplex severely compromised the 43S PIC assembly. Similarly, subunits eIF3a, c and e were found to represent an important binding force driving eIF3 binding to the 40S subunit. In addition, we demonstrated that eIF3c, and eIF3k and l subunits alter the efficiency of mRNA recruitment to 43S PICs in an opposite manner. Whereas the eIF3c knockdown reduces it, downregulation of eIF3k or eIF3l increases mRNA recruitment, suggesting that the latter subunits possess a regulatory potential. Altogether this study provides new insights into the role of human eIF3 in the initial assembly steps of the translational machinery.
- MeSH
- eukaryotický iniciační faktor 3 genetika MeSH
- formaldehyd farmakologie MeSH
- lidé MeSH
- malé podjednotky ribozomu eukaryotické genetika MeSH
- messenger RNA genetika MeSH
- proteiny asociované s mikrotubuly genetika MeSH
- proteosyntéza genetika MeSH
- reagencia zkříženě vázaná farmakologie MeSH
- ribozomy genetika MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- EIF3C protein, human MeSH Prohlížeč
- EIF3D protein, human MeSH Prohlížeč
- EIF3K protein, human MeSH Prohlížeč
- EIF3L protein, human MeSH Prohlížeč
- eukaryotický iniciační faktor 3 MeSH
- formaldehyd MeSH
- messenger RNA MeSH
- proteiny asociované s mikrotubuly MeSH
- reagencia zkříženě vázaná MeSH
Ribosome was long considered as a critical yet passive player in protein synthesis. Only recently the role of its basic components, ribosomal RNAs and proteins, in translational control has begun to emerge. Here we examined function of the small ribosomal protein uS3/Rps3, earlier shown to interact with eukaryotic translation initiation factor eIF3, in termination. We identified two residues in consecutive helices occurring in the mRNA entry pore, whose mutations to the opposite charge either reduced (K108E) or increased (R116D) stop codon readthrough. Whereas the latter increased overall levels of eIF3-containing terminating ribosomes in heavy polysomes in vivo indicating slower termination rates, the former specifically reduced eIF3 amounts in termination complexes. Combining these two mutations with the readthrough-reducing mutations at the extreme C-terminus of the a/Tif32 subunit of eIF3 either suppressed (R116D) or exacerbated (K108E) the readthrough phenotypes, and partially corrected or exacerbated the defects in the composition of termination complexes. In addition, we found that K108 affects efficiency of termination in the termination context-specific manner by promoting incorporation of readthrough-inducing tRNAs. Together with the multiple binding sites that we identified between these two proteins, we suggest that Rps3 and eIF3 closely co-operate to control translation termination and stop codon readthrough.
- MeSH
- eukaryotický iniciační faktor 3 genetika metabolismus MeSH
- geneticky modifikované organismy MeSH
- proteosyntéza genetika MeSH
- ribozomální proteiny genetika fyziologie MeSH
- ribozomy metabolismus MeSH
- RNA transferová metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika fyziologie MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- terminace translace peptidového řetězce * genetika MeSH
- terminační kodon metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- eukaryotický iniciační faktor 3 MeSH
- ribozomální proteiny MeSH
- RNA transferová MeSH
- RPS3 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
- terminační kodon MeSH
eIF3 is a large multiprotein complex serving as an essential scaffold promoting binding of other eIFs to the 40S subunit, where it coordinates their actions during translation initiation. Perhaps due to a high degree of flexibility of multiple eIF3 subunits, a high-resolution structure of free eIF3 from any organism has never been solved. Employing genetics and biochemistry, we previously built a 2D interaction map of all five yeast eIF3 subunits. Here we further improved the previously reported in vitro reconstitution protocol of yeast eIF3, which we cross-linked and trypsin-digested to determine its overall shape in 3D by advanced mass-spectrometry. The obtained cross-links support our 2D subunit interaction map and reveal that eIF3 is tightly packed with its WD40 and RRM domains exposed. This contrasts with reported cryo-EM structures depicting eIF3 as a molecular embracer of the 40S subunit. Since the binding of eIF1 and eIF5 further fortified the compact architecture of eIF3, we suggest that its initial contact with the 40S solvent-exposed side makes eIF3 to open up and wrap around the 40S head with its extended arms. In addition, we mapped the position of eIF5 to the region below the P- and E-sites of the 40S subunit.
- MeSH
- elektronová kryomikroskopie MeSH
- eukaryotický iniciační faktor 1 chemie genetika metabolismus MeSH
- eukaryotický iniciační faktor 3 chemie genetika metabolismus MeSH
- eukaryotický iniciační faktor 5 chemie genetika metabolismus MeSH
- iniciace translace peptidového řetězce * MeSH
- malé podjednotky ribozomu eukaryotické genetika metabolismus MeSH
- molekulární modely MeSH
- proteinové domény MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus ultrastruktura MeSH
- vazba proteinů MeSH
- vazebná místa genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- eukaryotický iniciační faktor 1 MeSH
- eukaryotický iniciační faktor 3 MeSH
- eukaryotický iniciační faktor 5 MeSH
- Saccharomyces cerevisiae - proteiny MeSH
Cells have elaborated a complex strategy to maintain protein homeostasis under physiological as well as stress conditions with the aim to ensure the smooth functioning of vital processes and producing healthy offspring. Impairment of one of the most important processes in living cells, translation, might have serious consequences including various brain disorders in humans. Here, we describe a variant of the translation initiation factor eIF3a, Rpg1-3, mutated in its PCI domain that displays an attenuated translation efficiency and formation of reversible assemblies at physiological growth conditions. Rpg1-3-GFP assemblies are not sequestered within mother cells only as usual for misfolded-protein aggregates and are freely transmitted from the mother cell into the bud although they are of non-amyloid nature. Their bud-directed transmission and the active movement within the cell area depend on the intact actin cytoskeleton and the related molecular motor Myo2. Mutations in the Rpg1-3 protein render not only eIF3a but, more importantly, also the eIF3 core complex prone to aggregation that is potentiated by the limited availability of Hsp70 and Hsp40 chaperones. Our results open the way to understand mechanisms yeast cells employ to cope with malfunction and aggregation of essential proteins and their complexes.
- Klíčová slova
- Actin, Aggregation, Asymmetric segregation, Hsp40, Hsp70, Myo2, Rpg1/eIF3a, Yeast,
- MeSH
- eukaryotický iniciační faktor 3 genetika MeSH
- lidé MeSH
- mikrofilamenta genetika MeSH
- mitochondrie MeSH
- mutace MeSH
- myosin typu V genetika MeSH
- proteinové agregáty genetika MeSH
- proteiny tepelného šoku HSP40 genetika MeSH
- proteiny tepelného šoku HSP70 genetika MeSH
- Saccharomyces cerevisiae - proteiny genetika MeSH
- Saccharomyces cerevisiae genetika růst a vývoj MeSH
- těžké řetězce myosinu genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- eukaryotický iniciační faktor 3 MeSH
- MYO2 protein, S cerevisiae MeSH Prohlížeč
- myosin typu V MeSH
- proteinové agregáty MeSH
- proteiny tepelného šoku HSP40 MeSH
- proteiny tepelného šoku HSP70 MeSH
- RPG1 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
- těžké řetězce myosinu MeSH
Protein production must be strictly controlled at its beginning and end to synthesize a polypeptide that faithfully copies genetic information carried in the encoding mRNA. In contrast to viruses and prokaryotes, the majority of mRNAs in eukaryotes contain only one coding sequence, resulting in production of a single protein. There are, however, many exceptional mRNAs that either carry short open reading frames upstream of the main coding sequence (uORFs) or even contain multiple long ORFs. A wide variety of mechanisms have evolved in microbes and higher eukaryotes to prevent recycling of some or all translational components upon termination of the first translated ORF in such mRNAs and thereby enable subsequent translation of the next uORF or downstream coding sequence. These specialized reinitiation mechanisms are often regulated to couple translation of the downstream ORF to various stimuli. Here we review all known instances of both short uORF-mediated and long ORF-mediated reinitiation and present our current understanding of the underlying molecular mechanisms of these intriguing modes of translational control.
- MeSH
- Bacteria genetika metabolismus MeSH
- Eukaryota genetika MeSH
- lidé MeSH
- otevřené čtecí rámce genetika MeSH
- proteosyntéza genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Intramural MeSH
Protein synthesis is mediated via numerous molecules including the ribosome, mRNA, tRNAs, as well as translation initiation, elongation and release factors. Some of these factors play several roles throughout the entire process to ensure proper assembly of the preinitiation complex on the right mRNA, accurate selection of the initiation codon, errorless production of the encoded polypeptide and its proper termination. Perhaps, the most intriguing of these multitasking factors is the eukaryotic initiation factor eIF3. Recent evidence strongly suggests that this factor, which coordinates the progress of most of the initiation steps, does not come off the initiation complex upon subunit joining, but instead it remains bound to 80S ribosomes and gradually falls off during the first few elongation cycles to: (1) promote resumption of scanning on the same mRNA molecule for reinitiation downstream-in case of translation of upstream ORFs short enough to preserve eIF3 bound; or (2) come back during termination on long ORFs to fine tune its fidelity or, if signaled, promote programmed stop codon readthrough. Here, we unite recent structural views of the eIF3-40S complex and discus all known eIF3 roles to provide a broad picture of the eIF3's impact on translational control in eukaryotic cells.
- MeSH
- eukaryotický iniciační faktor 3 chemie genetika metabolismus MeSH
- konformace proteinů * MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- molekulární modely MeSH
- podjednotky proteinů chemie genetika metabolismus MeSH
- proteosyntéza * MeSH
- ribozomy genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- eukaryotický iniciační faktor 3 MeSH
- messenger RNA MeSH
- podjednotky proteinů MeSH
- Saccharomyces cerevisiae - proteiny MeSH
Translation reinitiation is a gene-specific translational control mechanism characterized by the ability of some short upstream ORFs to prevent recycling of the post-termination 40S subunit in order to resume scanning for reinitiation downstream. Its efficiency decreases with the increasing uORF length, or by the presence of secondary structures, suggesting that the time taken to translate a uORF is more critical than its length. This led to a hypothesis that some initiation factors needed for reinitiation are preserved on the 80S ribosome during early elongation. Here, using the GCN4 mRNA containing four short uORFs, we developed a novel in vivo RNA-protein Ni2+-pull down assay to demonstrate for the first time that one of these initiation factors is eIF3. eIF3 but not eIF2 preferentially associates with RNA segments encompassing two GCN4 reinitiation-permissive uORFs, uORF1 and uORF2, containing cis-acting 5΄ reinitiation-promoting elements (RPEs). We show that the preferred association of eIF3 with these uORFs is dependent on intact RPEs and the eIF3a/TIF32 subunit and sharply declines with the extended length of uORFs. Our data thus imply that eIF3 travels with early elongating ribosomes and that the RPEs interact with eIF3 in order to stabilize the mRNA-eIF3-40S post-termination complex to stimulate efficient reinitiation downstream.
- MeSH
- 5' nepřekládaná oblast MeSH
- elongace translace peptidového řetězce MeSH
- eukaryotický iniciační faktor 3 metabolismus MeSH
- genetické techniky MeSH
- iniciace translace peptidového řetězce * MeSH
- malé podjednotky ribozomu eukaryotické metabolismus MeSH
- otevřené čtecí rámce * MeSH
- regulace genové exprese * MeSH
- ribozomy metabolismus MeSH
- terminace translace peptidového řetězce MeSH
- terminační kodon MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5' nepřekládaná oblast MeSH
- eukaryotický iniciační faktor 3 MeSH
- terminační kodon MeSH