Nejvíce citovaný článek - PubMed ID 24686032
BACKGROUND: Nanoparticles (NPs) with unique chemical and physical properties can be used for therapeutic purposes because of their strong antimicrobial activates. Nanoparticles have been used as an antimicrobial agents to inhibit microbial growth. OBJECTIVES: In view of the strong antimicrobial activity of nanoparticles, the biogenic synthesis and leishmanicidal activity of rod-shaped zinc oxide (R-ZnO) nanoparticles was explored using Lilium ledebourii tuber extract. MATERIALS AND METHODS: The ensuing nanoparticles are characterized by UV-visible spectroscopy, X-ray diffraction and transmission electron microscopy and their leishmanicidal activity evaluated against the Leishmania major (L. major) by MTT assay. RESULTS: The R-ZnO nanoparticles displayed excellent leishmanicidal activity against the L. major as they significantly inhibited the amastigotes. The IC50 values of R-ZnO nanoparticles being ~ 0.001 mg.mL-1. R-ZnO nanoparticles can inhibit L. major growth in a dose-dependent manner under in vitro conditions. CONCLUSION: A simple, low-cost feasible and eco-friendly procedure was developed for biosynthesis of R-ZnO nanoparticles using natural bioresource that can inhibit human parasite cells growth in a dose-dependent manner under in vitro conditions.
- Klíčová slova
- Biosynthesis, Leishmanicidal, NPs, Rod-shaped, Zinc oxide,
- Publikační typ
- časopisecké články MeSH
Traditional supplements of selenium generally have a low degree of absorption and increased toxicity. Therefore, it is imperative to develop innovative systems as transporters of selenium compounds, which would raise the bioavailability of this element and allow its controlled release in the organism. Nanoscale selenium has attracted a great interest as a food additive especially in individuals with selenium deficiency, but also as a therapeutic agent without significant side effects in medicine. This review is focused on the incorporation of nanotechnological applications, in particular exploring the possibilities of a more effective way of administration, especially in selenium-deficient organisms. In addition, this review summarizes the survey of knowledge on selenium nanoparticles, their biological effects in the organism, advantages, absorption mechanisms, and nanotechnological applications for peroral administration.
- Klíčová slova
- anticancer effect, antimicrobial activity, biomedicine, drug delivery, nanoparticles, oxidative stress, protective effect,
- MeSH
- aplikace orální MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- nanočástice aplikace a dávkování chemie MeSH
- nanomedicína metody MeSH
- nanotechnologie MeSH
- potravinářské přísady aplikace a dávkování chemie MeSH
- selen aplikace a dávkování farmakokinetika MeSH
- střevní sliznice účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- potravinářské přísady MeSH
- selen MeSH
Selenium is an essential trace element important for many physiological processes, especially for the functions of immune and reproductive systems, metabolism of thyroid hormones, as well as antioxidant defense. Selenium deficiency is usually manifested by an increased incidence of retention of placenta, metritis, mastitis, aborts, lowering fertility and increased susceptibility to infections. In calves, lambs and kids, the selenium deficiency demonstrates by WMD (white muscle disease), in foals and donkey foals, it is associated with incidence of WMD and yellow fat disease, and in pigs it causes VESD (vitamin E/selenium deficiency) syndrome. The prevention of these health disorders can be achieved by an adequate selenium supplementation to the diet. The review summarizes the survey of knowledge on selenium, its biological significance in the organism, the impact of its deficiency in mammalian livestock (comparison of ruminants vs. non-ruminants, herbivore vs. omnivore) and possibilities of its peroral administration. The databases employed were as follows: Web of Science, PubMed, MEDLINE and Google Scholar.
- Klíčová slova
- antioxidant, donkeys, horses, metallomics, oxidative stress, ruminants, selenium,
- MeSH
- lidé MeSH
- potravní doplňky MeSH
- savci metabolismus MeSH
- selen nedostatek metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- selen MeSH