Nejvíce citovaný článek - PubMed ID 24801892
Gallium(III) complexes of NOTA-bis (phosphonate) conjugates as PET radiotracers for bone imaging
A set of substituted 1,4,7-triazacyclononane ligands was synthesised, including a wide series of novel derivatives bearing a thiazole or thiophene side group, with the potential to incorporate these derivatives into a polymeric material; some previously known/studied ligands were also synthesised for comparative purposes. The corresponding copper(II) complexes were prepared, and their ability to mediate the hydrolysis of phosphate ester bonds was studied via UV-Vis spectrophotometry, using bis(p-nitrophenyl)phosphate as a model substrate. Some of the prepared complexes showed a considerable enhancement of the phosphate ester hydrolysis in comparison with previously studied systems, which makes them some of the most effective complexes ever tested for this purpose. Therefore, these novel, potentially bifunctional systems could provide the possibility of creating new coating materials for medicinal devices that could prevent biofilm formation.
- Klíčová slova
- artificial nuclease, bifunctional ligand, coordination compound,
- Publikační typ
- časopisecké články MeSH
Aminoalkyl-H-phosphinic acids, also called aminoalkylphosphonous acids, are investigated as biologically active analogues of carboxylic amino acids and/or as valuable intermediates for synthesis of other aminoalkylphosphorus acids. Their synthesis has been mostly accomplished by phospha-Mannich reaction of a P-H precursor, an aldehyde and an amine. The reaction is rarely clean and high-yielding. Here, reaction of H3PO2 with secondary amines and formaldehyde in wet AcOH led to aminomethyl-H-phosphinic acids in nearly quantitative yields and with almost no by-products. Surprisingly, the reaction outcome depended on the basicity of the amines. Amines with pK a > 7-8 gave the desired products. For less basic amines, reductive N-methylation coupled with oxidation of H3PO2 to H3PO3 became a relevant side reaction. Primary amines reacted less clearly and amino-bis(methyl-H-phosphinic acids) were obtained only for very basic amines. Reaction yields with higher aldehydes were lower. Unique carboxylic-phosphinic-phosphonic acids as well as poly(H-phosphinic acids) derived from polyamines were obtained. Synthetic usefulness of the aminoalkyl-H-phosphinic was illustrated in P-H bond oxidation and its addition to double bonds, and in selective amine deprotection. Compounds with an ethylene-diamine fragment, e.g. most common polyazamacrocycles, are not suitable substrates. The X-ray solid-state structures of seventeen aminoalkyl-phosphinic acids were determined. In the reaction mechanism, N-hydroxyalkyl species R2NCH2OH and [R2N(CH2OH)2]+, probably stabilized as acetate esters, are suggested as the reactive intermediates. This mechanism is an alternative one to the known phospha-Mannich reaction mechanisms. The conditions can be utilized in syntheses of various aminoalkylphosphorus compounds.
- Publikační typ
- časopisecké články MeSH
This review summarizes recent progress and developments as well as the most important pitfalls in targeted alpha-particle therapy, covering single alpha-particle emitters as well as in vivo alpha-particle generators. It discusses the production of radionuclides like 211At, 223Ra, 225Ac/213Bi, labelling and delivery employing various targeting vectors (small molecules, chelators for alpha-emitting nuclides and their biomolecular targets as well as nanocarriers), general radiopharmaceutical issues, preclinical studies, and clinical trials including the possibilities of therapy prognosis and follow-up imaging. Special attention is given to the nuclear recoil effect and its impacts on the possible use of alpha emitters for cancer treatment, proper dose estimation, and labelling chemistry. The most recent and important achievements in the development of alpha emitters carrying vectors for preclinical and clinical use are highlighted along with an outlook for future developments.
- Klíčová slova
- 223Ra, actinium, alpha particle, astatine, bismuth, decay, in vivo generators, nuclear recoil, radium, targeted alpha therapy,
- MeSH
- aktinium chemie terapeutické užití MeSH
- alfa částice terapeutické užití MeSH
- astat chemie terapeutické užití MeSH
- bismut chemie terapeutické užití MeSH
- chelátory chemie farmakokinetika MeSH
- dávka záření MeSH
- heterocyklické sloučeniny monocyklické chemie farmakokinetika MeSH
- heterocyklické sloučeniny chemie farmakokinetika MeSH
- knihovny malých molekul chemie farmakokinetika MeSH
- lidé MeSH
- nádory patologie radioterapie MeSH
- nosiče léků aplikace a dávkování chemie MeSH
- radiofarmaka chemie terapeutické užití MeSH
- radionuklidy chemie terapeutické užití MeSH
- radium chemie terapeutické užití MeSH
- vztah dávky záření a odpovědi MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- 1,4,7-triazacyclononane-N,N',N''-triacetic acid MeSH Prohlížeč
- 1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetraacetic acid MeSH Prohlížeč
- Actinium-225 MeSH Prohlížeč
- aktinium MeSH
- astat MeSH
- Astatine-211 MeSH Prohlížeč
- bismut MeSH
- Bismuth-213 MeSH Prohlížeč
- chelátory MeSH
- heterocyklické sloučeniny monocyklické MeSH
- heterocyklické sloučeniny MeSH
- knihovny malých molekul MeSH
- nosiče léků MeSH
- radiofarmaka MeSH
- radionuklidy MeSH
- Radium-223 MeSH Prohlížeč
- radium MeSH
BACKGROUND: Metastatic bone lesion is a common syndrome of many cancer diseases in an advanced state. The major symptom is severe pain, spinal cord compression, and pathological fracture, associated with an obvious morbidity. Common treatments including systemic application of bisphosphonate drugs aim on pain reduction and on improving the quality of life of the patient. Particularly, patients with multiple metastatic lesions benefit from bone-targeting therapeutic radiopharmaceuticals. Agents utilizing beta-emitting radionuclides in routine clinical praxis are, for example, [(89)Sr]SrCl2 and [(153)Sm]Sm-EDTMP. No-carrier-added (n.c.a.) (177)Lu is remarkably suitable for an application in this scope. METHODS: Five 1,4,7,10-tetraazacyclododecane N,N',N'',N''-tetra-acetic acid (DOTA)- and DO2A-based bisphosphonates, including monomeric and dimeric structures and one 1,4,7-triazacyclononane-1,4-diacetic acid (NO2A) derivative, were synthesized and labelled with n.c.a. (177)Lu. Radio-TLC and high-performance liquid chromatography (HPLC) methods were successfully established for determining radiochemical yields and for quality control. Their binding to hydroxyapatite was measured in vitro. Ex vivo biodistribution experiments and dynamic in vivo single photon computed tomography (SPECT)/CT measurements were performed in healthy rats for 5 min and 1 h periods. Data on %ID/g or standard uptake value (SUV) for femur, blood, and soft-tissue organs were analyzed and compared with [(177)Lu]citrate. RESULTS: Radiolabelling yields for [(177)Lu]Lu-DOTA and [(177)Lu]Lu-NO2A monomeric bisphosphonate complexes were >98 % within 15 min. The dimeric macrocyclic bisphosphonates showed a decelerated labelling kinetics, reaching a plateau after 30 min of 60 to 90 % radiolabelling yields. All (177)Lu-bisphosphonate complexes showed exclusive accumulation in the skeleton. Blood clearance and renal elimination were fast. SUV data (all for 1 h p.i.) in the femur ranged from 3.34 to 5.67. The bone/blood ratios were between 3.6 and 135.6, correspondingly. (177)Lu-bisphosphonate dimers showed a slightly higher bone accumulation (SUVfemur = 4.48 ± 0.38 for [(177)Lu]Lu-DO2A(P(BP))2; SUVfemur = 5.41 ± 0.46 for [(177)Lu]Lu-DOTA(M(BP))2) but a slower blood clearance (SUVblood = 1.25 ± 0.09 for [(177)Lu]Lu-DO2A(P(BP))2; SUVblood = 1.43 ± 0.32 for [(177)Lu]Lu-DOTA(M(BP))2). CONCLUSIONS: Lu-complexes of macrocyclic bisphosphonates might become options for the therapy of skeletal metastases in the near future, since they show high uptake in bone together with a very low soft-tissue accumulation.
- Klíčová slova
- 177Lu, Biodistribution, Bisphosphonate, Bone metastases, DO2A, DOTA, Theranostics,
- Publikační typ
- časopisecké články MeSH
In order to compare the coordination properties of 1,4,7-triazacyclononane (tacn) derivatives bearing varying numbers of phosphinic/carboxylic acid pendant groups towards 68Ga, 1,4,7-triazacyclononane-7-acetic-1,4-bis(methylenephosphinic) acid (NOPA) and 1,4,7- triazacyclononane-4,7-diacetic-1-[methylene(2-carboxyethyl)phosphinic] acid (NO2AP) were synthesized using Mannich reactions with trivalent or pentavalent forms of H-phosphinic acids as phosphorus components. Stepwise protonation constants logK1-3 12.06, 3.90 and 1.95, and stability constants with GaIII and CuII, logKGaL 24.01 and logKCuL 16.66, were potentiometrically determined for NOPA. Both ligands were labelled with 68Ga and compared with NOTA (tacn-N,N',N″-triacetic acid) and NOPO, a TRAP-type [tacn-N,N',N″- tris(methylenephosphinic acid)] chelator. At pH 3, NOPO and NOPA showed higher labelling efficiency (binding with lower ligand excess) at both room temperature and 95 °C, compared to NO2AP and NOTA. Labelling efficiency at pH = 0-3 correlated with a number of phosphinic acid pendants: NOPO >> NOPA > NO2AP >> NOTA; however, it was more apparent at 95 °C than at room temperature. By contrast, NOTA was found to be labelled more efficiently at pH > 4 compared to the ligands with phosphinic acids. Overall, replacement of a single phosphinate donor with a carboxylate does not challenge 68Ga labelling of TRAP-type chelators. However, the presence of carboxylates facilitates labelling at neutral or weakly acidic pH.
- Klíčová slova
- PET tracer development, gallium complexes, macrocyclic ligands, metal complexes, molecular imaging, phosphinate complexes, positron emission tomography, radiolabelling, radiopharmaceuticals, tacn derivative,
- MeSH
- chelátory * chemická syntéza chemie MeSH
- galium chemie MeSH
- heterocyklické sloučeniny * chemická syntéza chemie MeSH
- radioizotopy galia chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,4,7-triazacyclononane MeSH Prohlížeč
- chelátory * MeSH
- galium MeSH
- heterocyklické sloučeniny * MeSH
- radioizotopy galia MeSH