Nejvíce citovaný článek - PubMed ID 24819614
U0126, a mitogen-activated protein kinase kinase 1 and 2 (MEK1 and 2) inhibitor, selectively up-regulates main isoforms of CYP3A subfamily via a pregnane X receptor (PXR) in HepG2 cells
Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are closely related nuclear receptors with overlapping regulatory functions in xenobiotic clearance but distinct roles in endobiotic metabolism. Car activation has been demonstrated to ameliorate hypercholesterolemia by regulating cholesterol metabolism and bile acid elimination, whereas PXR activation is associated with hypercholesterolemia and liver steatosis. Here we show a human CAR agonist/PXR antagonist, MI-883, which effectively regulates genes related to xenobiotic metabolism and cholesterol/bile acid homeostasis by leveraging CAR and PXR interactions in gene regulation. Through comprehensive analyses utilizing lipidomics, bile acid metabolomics, and transcriptomics in humanized PXR-CAR-CYP3A4/3A7 mice fed high-fat and high-cholesterol diets, we demonstrate that MI-883 significantly reduces plasma cholesterol levels and enhances fecal bile acid excretion. This work paves the way for the development of ligands targeting multiple xenobiotic nuclear receptors. Such ligands hold the potential for precise modulation of liver metabolism, offering new therapeutic strategies for metabolic disorders.
- MeSH
- cholesterol * metabolismus krev MeSH
- cytochrom P-450 CYP3A metabolismus genetika MeSH
- dieta s vysokým obsahem tuků * škodlivé účinky MeSH
- hypercholesterolemie * farmakoterapie metabolismus MeSH
- hypolipidemika farmakologie terapeutické užití MeSH
- játra metabolismus účinky léků MeSH
- konstitutivní androstanový receptor * MeSH
- lidé MeSH
- metabolismus lipidů účinky léků MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- pregnanový X receptor * metabolismus genetika MeSH
- pyridiny MeSH
- receptory cytoplazmatické a nukleární * metabolismus agonisté genetika MeSH
- regulace genové exprese účinky léků MeSH
- žlučové kyseliny a soli * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1,4-bis(2-(3,5-dichloropyridyloxy))benzene MeSH Prohlížeč
- cholesterol * MeSH
- cytochrom P-450 CYP3A MeSH
- hypolipidemika MeSH
- konstitutivní androstanový receptor * MeSH
- pregnanový X receptor * MeSH
- pyridiny MeSH
- receptory cytoplazmatické a nukleární * MeSH
- žlučové kyseliny a soli * MeSH
Pregnane X receptor (PXR) is the major regulator of xenobiotic metabolism. PXR itself is controlled by various signaling molecules including glucocorticoids. Moreover, negative feed-back regulation has been proposed at the transcriptional level. We examined the involvement of the 3'-untranslated region (3'-UTR) of NR1I2 mRNA and microRNAs in PXR- and glucocorticoid receptor (GR)-mediated regulation of NR1I2 gene expression. PXR ligands were found to significantly downregulate NR1I2 mRNA expression in a set of 14 human hepatocyte cultures. Similarly, PXR was downregulated by PCN in the C57/BL6 mice liver. In mechanistic studies with the full-length 3'-UTR cloned into luciferase reporter or expression vectors, we showed that the 3'-UTR reduces PXR expression. From the miRNAs tested, miR-18a-5p inhibited both NR1I2 expression and CYP3A4 gene induction. Importantly, we observed significant upregulation of miR-18a-5p expression 6 h after treatment with the PXR ligand rifampicin, which indicates a putative mechanism underlying NR1I2 negative feed-back regulation in hepatic cells. Additionally, glucocorticoids upregulated NR1I2 expression not only through the promoter region but also via 3'-UTR regulation, which likely involves downregulation of miR-18a-5p. We conclude that miR-18a-5p is involved in the down-regulation of NR1I2 expression by its ligands and in the upregulation of NR1I2 mRNA expression by glucocorticoids in hepatic cells.
- Klíčová slova
- 3′-UTR, 3′-untranslated region, CAR, constitutive androstane receptor, CYP3A4, cytochrome P450 3A4, Cytochrome P450 3A4, DEX, dexamethasone, DMEs, drug metabolizing enzymes, DMSO, dimethyl sulfoxide, ER, estrogen receptor, GRα, glucocorticoid receptor α, Gene expression, Gluc, Gaussia luciferase, Glucocorticoid, LBD, ligand binding domain, MRE, miRNA-response element, MicroRNA, NR, nuclear receptor, PB, phenobarbital, PCN, pregnenolone 16α-carbonitrile, PHHs, primary human hepatocytes, PPARα, peroxisome proliferator-activated receptor α, PXR, pregnane X receptor, Pregnane X receptor, RXRα, retinoid X receptor α, Regulation, Rif, rifampicin, SEAP, secreted alkaline phosphatase, miRNA, microRNA,
- Publikační typ
- časopisecké články MeSH
Pregnane X receptor is a ligand-activated nuclear receptor (NR) that mainly controls inducible expression of xenobiotics handling genes including biotransformation enzymes and drug transporters. Nowadays it is clear that PXR is also involved in regulation of intermediate metabolism through trans-activation and trans-repression of genes controlling glucose, lipid, cholesterol, bile acid, and bilirubin homeostasis. In these processes PXR cross-talks with other NRs. Accumulating evidence suggests that the cross-talk is often mediated by competing for common coactivators or by disruption of coactivation and activity of other transcription factors by the ligand-activated PXR. In this respect mainly PXR-CAR and PXR-HNF4α interference have been reported and several cytochrome P450 enzymes (such as CYP7A1 and CYP8B1), phase II enzymes (SULT1E1, Gsta2, Ugt1a1), drug and endobiotic transporters (OCT1, Mrp2, Mrp3, Oatp1a, and Oatp4) as well as intermediate metabolism enzymes (PEPCK1 and G6Pase) have been shown as down-regulated genes after PXR activation. In this review, I summarize our current knowledge of PXR-mediated repression and coactivation interference in PXR-controlled gene expression regulation.
- Klíčová slova
- PXR, cross-talk, gene regulation, metabolism, nuclear receptor,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND AND PURPOSE: The organic cation transporter 1 (OCT1) transports cationic drugs into hepatocytes. The high hepatic expression of OCT1 is controlled by the HNF4α and USF transcription factors. Pregnane X receptor (PXR) mediates induction of the principal xenobiotic metabolizing enzymes and transporters in the liver. Here, we have assessed the down-regulation of OCT1 expression by PXR activation. EXPERIMENTAL APPROACH: We used primary human hepatocytes and related cell lines to measure OCT1 expression and activity, by assaying MPP(+) accumulation. Western blotting, qRT-PCR, the OCT1 promoter gene reporter constructs and chromatin immunoprecipitation assays were also used. KEY RESULTS: OCT1 mRNA in human hepatocytes was down-regulated along with reduced [(3) H]MPP(+) accumulation in differentiated HepaRG cells after treatment with rifampicin. Rifampicin and hyperforin as well as the constitutively active PXR mutant T248D suppressed activity of the 1.8 kb OCT1 promoter construct in gene reporter assays. Silencing of both PXR and HNF4α in HepaRG cells blocked the PXR ligand-mediated down-regulation of OCT1 expression. The mutation of HNF4α and USF1 (E-box) responsive elements reversed the PXR-mediated inhibition in gene reporter assays. Chromatin immunoprecipitation assays indicated that PXR activation sequestrates the SRC-1 coactivator from the HNF4α response element and E-box of the OCT1 promoter. Consistent with these findings, exogenous overexpression of the SRC-1, but not the PGC1α coactivator, relieved the PXR-mediated repression of OCT1 transactivation. CONCLUSIONS AND IMPLICATIONS: PXR ligands reduced the HNF4α-mediated and USF-mediated transactivation of OCT1 gene expression by competing for SRC-1 and decreased delivery of a model OCT1 substrate into hepatocytes.
- MeSH
- buňky Hep G2 MeSH
- down regulace MeSH
- floroglucinol analogy a deriváty farmakologie MeSH
- hepatocyty metabolismus MeSH
- koaktivátor 1 jaderných receptorů metabolismus MeSH
- lidé MeSH
- nádorové buňky kultivované MeSH
- oktamerní transkripční faktor 1 genetika metabolismus MeSH
- pregnanový X receptor MeSH
- rifampin farmakologie MeSH
- steroidní receptory metabolismus MeSH
- terpeny farmakologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- floroglucinol MeSH
- hyperforin MeSH Prohlížeč
- koaktivátor 1 jaderných receptorů MeSH
- NCOA1 protein, human MeSH Prohlížeč
- oktamerní transkripční faktor 1 MeSH
- POU2F1 protein, human MeSH Prohlížeč
- pregnanový X receptor MeSH
- rifampin MeSH
- steroidní receptory MeSH
- terpeny MeSH