Nejvíce citovaný článek - PubMed ID 24832494
Anthracycline resistance mediated by reductive metabolism in cancer cells: the role of aldo-keto reductase 1C3
Targeting mutations that trigger acute myeloid leukaemia (AML) has emerged as a refined therapeutic approach in recent years. Enasidenib (Idhifa) is the first selective inhibitor of mutated forms of isocitrate dehydrogenase 2 (IDH2) approved against relapsed/refractory AML. In addition to its use as monotherapy, a combination trial of enasidenib with standard intensive induction therapy (daunorubicin + cytarabine) is being evaluated. This study aimed to decipher enasidenib off-target molecular mechanisms involved in anthracycline resistance, such as reduction by carbonyl reducing enzymes (CREs) and drug efflux by ATP-binding cassette (ABC) transporters. We analysed the effect of enasidenib on daunorubicin (Daun) reduction by several recombinant CREs and different human cell lines expressing aldo-keto reductase 1C3 (AKR1C3) exogenously (HCT116) or endogenously (A549 and KG1a). Additionally, A431 cell models overexpressing ABCB1, ABCG2, or ABCC1 were employed to evaluate enasidenib modulation of Daun efflux. Furthermore, the potential synergism of enasidenib over Daun cytotoxicity was quantified amongst all the cell models. Enasidenib selectively inhibited AKR1C3-mediated inactivation of Daun in vitro and in cell lines expressing AKR1C3, as well as its extrusion by ABCB1, ABCG2, and ABCC1 transporters, thus synergizing Daun cytotoxicity to overcome resistance. This work provides in vitro evidence on enasidenib-mediated targeting of the anthracycline resistance actors AKR1C3 and ABC transporters under clinically achievable concentrations. Our findings may encourage its combination with intensive chemotherapy and even suggest that the effectiveness of enasidenib as monotherapy against AML could lie beyond the targeting of mIDH2.
- Klíčová slova
- ABC transporters, AKR1C3, AML, Enasidenib, IDH inhibitor,
- MeSH
- ABC transportéry metabolismus MeSH
- adenosintrifosfát MeSH
- akutní myeloidní leukemie * farmakoterapie genetika MeSH
- antracykliny MeSH
- cytarabin terapeutické užití MeSH
- daunomycin * farmakologie MeSH
- isocitrátdehydrogenasa genetika metabolismus terapeutické užití MeSH
- lidé MeSH
- protinádorová antibiotika terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ABC transportéry MeSH
- adenosintrifosfát MeSH
- antracykliny MeSH
- cytarabin MeSH
- daunomycin * MeSH
- enasidenib MeSH Prohlížeč
- isocitrátdehydrogenasa MeSH
- protinádorová antibiotika MeSH
Zanubrutinib (ZAN) is a Bruton's tyrosine kinase inhibitor recently approved for the treatment of some non-Hodgkin lymphomas. In clinical trials, ZAN is often combined with standard anthracycline (ANT) chemotherapy. Although ANTs are generally effective, drug resistance is a crucial obstacle that leads to treatment discontinuation. This study showed that ZAN counteracts ANT resistance by targeting aldo-keto reductase 1C3 (AKR1C3) and ATP-binding cassette (ABC) transporters. AKR1C3 catalyses the transformation of ANTs to less potent hydroxy-metabolites, whereas transporters decrease the ANT-effective concentrations by pumping them out of the cancer cells. In our experiments, ZAN inhibited the AKR1C3-mediated inactivation of daunorubicin (DAUN) at both the recombinant and cellular levels. In the drug combination experiments, ZAN synergistically sensitised AKR1C3-expressing HCT116 and A549 cells to DAUN treatment. Gene induction studies further confirmed that ZAN did not increase the intracellular level of AKR1C3 mRNA; thus, the drug combination effect is not abolished by enzyme induction. Finally, in accumulation assays, ZAN was found to interfere with the DAUN efflux mediated by the ABCB1, ABCG2, and ABCC1 transporters, which might further contribute to the reversal of ANT resistance. In summary, our data provide the rationale for ZAN inclusion in ANT-based therapy and suggest its potential for the treatment of tumours expressing AKR1C3 and/or the above-mentioned ABC transporters.
- Klíčová slova
- ABC drug efflux transporter, aldo-keto reductase 1C3, anthracycline, drug resistance, zanubrutinib,
- Publikační typ
- časopisecké články MeSH
Tepotinib is a novel tyrosine kinase inhibitor recently approved for the treatment of non-small cell lung cancer (NSCLC). In this study, we evaluated the tepotinib's potential to perpetrate pharmacokinetic drug interactions and modulate multidrug resistance (MDR). Accumulation studies showed that tepotinib potently inhibits ABCB1 and ABCG2 efflux transporters, which was confirmed by molecular docking. In addition, tepotinib inhibited several recombinant cytochrome P450 (CYP) isoforms with varying potency. In subsequent drug combination experiments, tepotinib synergistically reversed daunorubicin and mitoxantrone resistance in cells with ABCB1 and ABCG2 overexpression, respectively. Remarkably, MDR-modulatory properties were confirmed in ex vivo explants derived from NSCLC patients. Furthermore, we demonstrated that anticancer effect of tepotinib is not influenced by the presence of ABC transporters associated with MDR, although monolayer transport assays designated it as ABCB1 substrate. Finally, tested drug was observed to have negligible effect on the expression of clinically relevant drug efflux transporters and CYP enzymes. In conclusion, our findings provide complex overview on the tepotinib's drug interaction profile and suggest a promising novel therapeutic strategy for future clinical investigations.
- Klíčová slova
- ABC transporter, cytochrome P450, drug interaction, multidrug resistance, non-small cell lung cancer, tepotinib,
- MeSH
- ABC transportéry antagonisté a inhibitory MeSH
- chemorezistence účinky léků MeSH
- cytostatické látky farmakologie MeSH
- lékové interakce * MeSH
- lidé MeSH
- mnohočetná léková rezistence účinky léků MeSH
- nádory plic farmakoterapie metabolismus patologie MeSH
- nemalobuněčný karcinom plic farmakoterapie metabolismus patologie MeSH
- piperidiny farmakologie MeSH
- protinádorové látky farmakologie MeSH
- pyridaziny farmakologie MeSH
- pyrimidiny farmakologie MeSH
- techniky in vitro MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ABC transportéry MeSH
- cytostatické látky MeSH
- piperidiny MeSH
- protinádorové látky MeSH
- pyridaziny MeSH
- pyrimidiny MeSH
- tepotinib MeSH Prohlížeč
Midostaurin is an FMS-like tyrosine kinase 3 receptor (FLT3) inhibitor that provides renewed hope for treating acute myeloid leukaemia (AML). The limited efficacy of this compound as a monotherapy contrasts with that of its synergistic combination with standard cytarabine and daunorubicin (Dau), suggesting a therapeutic benefit that is not driven only by FLT3 inhibition. In an AML context, the activity of the enzyme aldo-keto reductase 1C3 (AKR1C3) is a crucial factor in chemotherapy resistance, as it mediates the intracellular transformation of anthracyclines to less active hydroxy metabolites. Here, we report that midostaurin is a potent inhibitor of Dau inactivation mediated by AKR1C3 in both its recombinant form as well as during its overexpression in a transfected cell model. Likewise, in the FLT3- AML cell line KG1a, midostaurin was able to increase the cellular accumulation of Dau and significantly decrease its metabolism by AKR1C3 simultaneously. The combination of those mechanisms increased the nuclear localization of Dau, thus synergizing its cytotoxic effects on KG1a cells. Our results provide new in vitro evidence of how the therapeutic activity of midostaurin could operate beyond targeting the FLT3 receptor.
- Klíčová slova
- AKR1C3, AML therapy, Anthracyclines, Midostaurin, Multidrug resistance,
- MeSH
- akutní myeloidní leukemie farmakoterapie enzymologie genetika patologie MeSH
- biotransformace MeSH
- daunomycin metabolismus farmakologie MeSH
- HCT116 buňky MeSH
- inhibitory enzymů farmakologie MeSH
- kolorektální nádory farmakoterapie enzymologie genetika patologie MeSH
- lidé MeSH
- protein AKR1C3 antagonisté a inhibitory genetika metabolismus MeSH
- protokoly protinádorové kombinované chemoterapie farmakologie MeSH
- staurosporin analogy a deriváty farmakologie MeSH
- synergismus léků MeSH
- tyrosinkinasa 3 podobná fms antagonisté a inhibitory genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AKR1C3 protein, human MeSH Prohlížeč
- daunomycin MeSH
- FLT3 protein, human MeSH Prohlížeč
- inhibitory enzymů MeSH
- midostaurin MeSH Prohlížeč
- protein AKR1C3 MeSH
- staurosporin MeSH
- tyrosinkinasa 3 podobná fms MeSH
Over the last few years, aldo-keto reductase family 1 member C3 (AKR1C3) has been associated with the emergence of multidrug resistance (MDR), thereby hindering chemotherapy against cancer. In particular, impaired efficacy of the gold standards of induction therapy in acute myeloid leukaemia (AML) has been correlated with AKR1C3 expression, as this enzyme metabolises several drugs including anthracyclines. Therefore, the development of selective AKR1C3 inhibitors may help to overcome chemoresistance in clinical practice. In this regard, we demonstrated that Bruton's tyrosine kinase (BTK) inhibitors ibrutinib and acalabrutinib efficiently prevented daunorubicin (Dau) inactivation mediated by AKR1C3 in both its recombinant form as well as during its overexpression in cancer cells. This revealed a synergistic effect of BTK inhibitors on Dau cytotoxicity in cancer cells expressing AKR1C3 both exogenously and endogenously, thus reverting anthracycline resistance in vitro. These findings suggest that BTK inhibitors have a novel off-target action, which can be exploited against leukaemia through combination regimens with standard chemotherapeutics like anthracyclines.
- Klíčová slova
- AKR1C3, Bruton’s tyrosine kinase, acalabrutinib, anthracyclines, ibrutinib, multidrug resistance,
- Publikační typ
- časopisecké články MeSH
Olaparib is a potent poly (ADP-ribose) polymerase inhibitor currently used in targeted therapy for treating cancer cells with BRCA mutations. Here we investigate the possible interference of olaparib with daunorubicin (Daun) metabolism, mediated by carbonyl-reducing enzymes (CREs), which play a significant role in the resistance of cancer cells to anthracyclines. Incubation experiments with the most active recombinant CREs showed that olaparib is a potent inhibitor of the aldo-keto reductase 1C3 (AKR1C3) enzyme. Subsequent inhibitory assays in the AKR1C3-overexpressing cellular model transfected human colorectal carcinoma HCT116 cells, demonstrating that olaparib significantly inhibits AKR1C3 at the intracellular level. Consequently, molecular docking studies have supported these findings and identified the possible molecular background of the interaction. Drug combination experiments in HCT116, human liver carcinoma HepG2, and leukemic KG1α cell lines showed that this observed interaction can be exploited for the synergistic enhancement of Daun's antiproliferative effect. Finally, we showed that olaparib had no significant effect on the mRNA expression of AKR1C3 in HepG2 and KG1α cells. In conclusion, our data demonstrate that olaparib interferes with anthracycline metabolism, and suggest that this phenomenon might be utilized for combating anthracycline resistance.
- Klíčová slova
- HepG2, KG1α, anti-proliferative, daunorubicin, leukaemia, olaparib, synergistic,
- Publikační typ
- časopisecké články MeSH
Pharmacotherapy of acute myeloid leukemia (AML) remains challenging, and the disease has one of the lowest curability rates among hematological malignancies. The therapy outcomes are often compromised by the existence of a resistant AML phenotype associated with overexpression of ABCB1 and ABCG2 transporters. Because AML induction therapy frequently consists of anthracycline-like drugs, their efficiency may also be diminished by drug biotransformation via carbonyl reducing enzymes (CRE). In this study, we investigated the modulatory potential of the CDK4/6 inhibitors abemaciclib, palbociclib, and ribociclib on AML resistance using peripheral blood mononuclear cells (PBMC) isolated from patients with de novo diagnosed AML. We first confirmed inhibitory effect of the tested drugs on ABCB1 and ABCG2 in ABC transporter-expressing resistant HL-60 cells while also showing the ability to sensitize the cells to cytotoxic drugs even as no effect on AML-relevant CRE isoforms was observed. All tested CDK4/6 inhibitors elevated mitoxantrone accumulations in CD34+ PBMC and enhanced accumulation of mitoxantrone was found with abemaciclib and ribociclib in PBMC of FLT3-ITD- patients. Importantly, the accumulation rate in the presence of CDK4/6 inhibitors positively correlated with ABCB1 expression in CD34+ patients and led to enhanced apoptosis of PBMC in contrast to CD34- samples. In summary, combination therapy involving CDK4/6 inhibitors could favorably target multidrug resistance, especially when personalized based on CD34- and ABCB1-related markers.
- Klíčová slova
- ABC transporters, CDK4/6 inhibitors, acute myeloid leukemia, drug resistance,
- Publikační typ
- časopisecké články MeSH