Most cited article - PubMed ID 25014212
Superhydrophilic polystyrene nanofiber materials generating O2((1)Δ(g)): postprocessing surface modifications toward efficient antibacterial effect
Optical sensors based on the quenching of the luminescence of platinum(II)octaethylporphyrin (PtOEP) encapsulated in nanofiber polymeric membranes were prepared by electrospinning. The samples were characterized using scanning electron microscopy, confocal luminescence microscopy, absorption spectroscopy, and steady-state and time-resolved luminescence techniques. The properties of the sensors were changed by the selection of different polymeric membranes using polycaprolactone, polystyrene, polyurethane Tecophilic, and poly(vinylidene fluoride-co-hexafluoropropylene) polymers. Among them, biodegradable and biocompatible sensors prepared from polycaprolactone with a high oxygen diffusion coefficient exhibited a fast response time (0.37 s), recovery time (0.58 s), high sensitivity (maximum I 0 /I ratio = 52), reversible luminescent response, and linear Stern-Volmer quenching over the whole range of oxygen contents in both the gas atmosphere and aqueous media. Moreover, the proposed sensors exhibited high antibacterial properties, resulting in self-sterilization character of the membrane surface due to the photogeneration of singlet oxygen. This dual character can find application in the biomedical field, where both properties (oxygen sensing and self-sterilization) can be acquired from the same material.
- Publication type
- Journal Article MeSH
We have prepared photoactive multifunctional nanofiber membranes via the simple electrospinning method. The antibacterial and photocatalytic properties of these materials are based on the generation of singlet oxygen formed by processes photosensitized by the tetraphenylporphyrin encapsulated in the nanofibers. The addition of magnetic features in the form of magnetic maghemite (γ-Fe2O3) nanoparticles stabilized by polyethylenimine enables additional functionalities, namely, the postirradiation formation of hydrogen peroxide and improved photothermal properties. This hybrid material allows for remote manipulation by a magnetic field, even in hazardous and/or highly microbial contaminant environments.
- Publication type
- Journal Article MeSH
Photodynamic inactivation (PDI) is a promising approach for the efficient killing of pathogenic microbes. In this study, the photodynamic effect of sulfonated polystyrene nanoparticles with encapsulated hydrophobic 5,10,15,20-tetraphenylporphyrin (TPP-NP) photosensitizers on Gram-positive (including multi-resistant) and Gram-negative bacterial strains was investigated. The cell viability was determined by the colony forming unit method. The results showed no dark cytotoxicity but high phototoxicity within the tested conditions. Gram-positive bacteria were more sensitive to TPP-NPs than Gram-negative bacteria. Atomic force microscopy was used to detect changes in the morphological properties of bacteria before and after the PDI treatment.
- MeSH
- Bacteria drug effects radiation effects MeSH
- Photochemical Processes * MeSH
- Photochemotherapy methods MeSH
- Microscopy, Atomic Force MeSH
- Nanoparticles * chemistry MeSH
- Polystyrenes * chemistry MeSH
- Porphyrins administration & dosage chemistry MeSH
- Drug Compounding * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Polystyrenes * MeSH
- Porphyrins MeSH
- tetraphenylporphyrin MeSH Browser