Nejvíce citovaný článek - PubMed ID 25634617
Not all IGHV3-21 chronic lymphocytic leukemias are equal: prognostic considerations
SF3B1 mutations are recurrent in chronic lymphocytic leukemia (CLL), particularly enriched in clinically aggressive stereotyped subset #2. To investigate their impact, we conducted RNA-sequencing of 18 SF3B1MUT and 17 SF3B1WT subset #2 cases and identified 80 significant alternative splicing events (ASEs). Notable ASEs concerned exon inclusion in the non-canonical BAF (ncBAF) chromatin remodeling complex subunit, BRD9, and splice variants in eight additional ncBAF complex interactors. Long-read RNA-sequencing confirmed the presence of splice variants, and extended analysis of 139 CLL cases corroborated their association with SF3B1 mutations. Overexpression of SF3B1K700E induced exon inclusion in BRD9, resulting in a novel splice isoform with an alternative C-terminus. Protein interactome analysis of the BRD9 splice isoform revealed augmented ncBAF complex interaction, while exhibiting decreased binding of auxiliary proteins, including SPEN, BRCA2, and CHD9. Additionally, integrative multi-omics analysis identified a ncBAF complex-bound gene quartet on chromosome 1 with higher expression levels and more accessible chromatin in SF3B1MUT CLL. Finally, Cancer Dependency Map analysis and BRD9 inhibition displayed BRD9 dependency and sensitivity in cell lines and primary CLL cells. In conclusion, spliceosome dysregulation caused by SF3B1 mutations leads to multiple ASEs and an altered ncBAF complex interactome, highlighting a novel pathobiological mechanism in SF3B1MUT CLL.
- MeSH
- alternativní sestřih MeSH
- chronická lymfatická leukemie * genetika patologie metabolismus MeSH
- fosfoproteiny * genetika metabolismus MeSH
- lidé MeSH
- mutace * MeSH
- proteiny obsahující bromodoménu MeSH
- restrukturace chromatinu * MeSH
- sestřihové faktory * genetika metabolismus MeSH
- spliceozomy * metabolismus genetika MeSH
- transkripční faktory genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- BRD9 protein, human MeSH Prohlížeč
- fosfoproteiny * MeSH
- proteiny obsahující bromodoménu MeSH
- sestřihové faktory * MeSH
- SF3B1 protein, human MeSH Prohlížeč
- transkripční faktory MeSH
Patients with chronic lymphocytic leukemia (CLL) exhibit diverse clinical outcomes. An expanding array of genetic tests is now employed to facilitate the identification of patients with high-risk disease and inform treatment decisions. These tests encompass molecular cytogenetic analysis, focusing on recurrent chromosomal alterations, particularly del(17p). Additionally, sequencing is utilized to identify TP53 mutations and to determine the somatic hypermutation status of the immunoglobulin heavy variable gene. Concurrently, a swift advancement of targeted treatment has led to the implementation of novel strategies for patients with CLL, including kinase and BCL2 inhibitors. This review explores both current and emerging diagnostic tests aimed at identifying high-risk patients who should benefit from targeted therapies. We outline existing treatment paradigms, emphasizing the importance of matching the right treatment to the right patient beyond genetic stratification, considering the crucial balance between safety and efficacy. We also take into consideration the practical and logistical issues when choosing a management strategy for each individual patient. Furthermore, we delve into the mechanisms underlying therapy resistance and stress the relevance of monitoring measurable residual disease to guide treatment decisions. Finally, we underscore the necessity of aggregating real-world data, adopting a global perspective, and ensuring patient engagement. Taken together, we argue that precision medicine is not the mere application of precision diagnostics and accessibility of precision therapies in CLL but encompasses various aspects of the patient journey (e.g., lifestyle exposures and comorbidities) and their preferences toward achieving true personalized medicine for patients with CLL.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Key processes in the onset and evolution of chronic lymphocytic leukemia (CLL) are thought to include chronic (antigenic) activation of mature B cells through the B cell receptor (BcR), signals from the microenvironment, and acquisition of genetic alterations. Here we describe three families in which two or more siblings were affected by CLL. We investigated whether there are immunogenetic similarities in the leukemia-specific immunoglobulin heavy (IGH) and light (IGL/IGK) chain gene rearrangements of the siblings in each family. Furthermore, we performed array analysis to study if similarities in CLL-associated chromosomal aberrations are present within each family and screened for somatic mutations using paired tumor/normal whole-genome sequencing (WGS). In two families a consistent IGHV gene mutational status (one IGHV-unmutated, one IGHV-mutated) was observed. Intriguingly, the third family with four affected siblings was characterized by usage of the lambda IGLV3-21 gene, with the hallmark R110 mutation of the recently described clinically aggressive IGLV3-21R110 subset. In this family, the CLL-specific rearrangements in two siblings could be assigned to either stereotyped subset #2 or the immunogenetically related subset #169, both of which belong to the broader IGLV3-21R110 subgroup. Consistent patterns of cytogenetic aberrations were encountered in all three families. Furthermore, the CLL clones carried somatic mutations previously associated with IGHV mutational status, cytogenetic aberrations and stereotyped subsets, respectively. From these findings, we conclude that similarities in immunogenetic characteristics in familial CLL, in combination with genetic aberrations acquired, point towards shared underlying mechanisms behind CLL development within each family.
- Klíčová slova
- BCR stereotypy, CLL (Chronic Lymphocytic Leukemia), CLL development, Familial CLL, IGLV3-21 R110,
- Publikační typ
- časopisecké články MeSH
Chronic lymphocytic leukemia (CLL) is characterized by the existence of subsets of patients with (quasi)identical, stereotyped B-cell receptor (BcR) immunoglobulins. Patients in certain major stereotyped subsets often display remarkably consistent clinicobiological profiles, suggesting that the study of BcR immunoglobulin stereotypy in CLL has important implications for understanding disease pathophysiology and refining clinical decision-making. Nevertheless, several issues remain open, especially pertaining to the actual frequency of BcR immunoglobulin stereotypy and major subsets, as well as the existence of higher-order connections between individual subsets. To address these issues, we investigated clonotypic IGHV-IGHD-IGHJ gene rearrangements in a series of 29 856 patients with CLL, by far the largest series worldwide. We report that the stereotyped fraction of CLL peaks at 41% of the entire cohort and that all 19 previously identified major subsets retained their relative size and ranking, while 10 new ones emerged; overall, major stereotyped subsets had a cumulative frequency of 13.5%. Higher-level relationships were evident between subsets, particularly for major stereotyped subsets with unmutated IGHV genes (U-CLL), for which close relations with other subsets, termed "satellites," were identified. Satellite subsets accounted for 3% of the entire cohort. These results confirm our previous notion that major subsets can be robustly identified and are consistent in relative size, hence representing distinct disease variants amenable to compartmentalized research with the potential of overcoming the pronounced heterogeneity of CLL. Furthermore, the existence of satellite subsets reveals a novel aspect of repertoire restriction with implications for refined molecular classification of CLL.
- MeSH
- chronická lymfatická leukemie genetika MeSH
- frekvence genu MeSH
- genová přestavba MeSH
- lidé MeSH
- somatická hypermutace imunoglobulinových genů MeSH
- těžké řetězce imunoglobulinů genetika MeSH
- variabilní oblast imunoglobulinu genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- těžké řetězce imunoglobulinů MeSH
- variabilní oblast imunoglobulinu MeSH
BACKGROUND: Aging is known to induce immunosenescence, resulting in alterations in both the innate and adaptive immune system. Here we evaluated the effects of aging on B cell subsets in peripheral blood of 155 immunologically healthy individuals in four age categories (range 20-95y) via multi-parameter flow cytometry. Furthermore, we studied the naive and antigen-experienced B cell receptor (BCR) repertoire of different age groups and compared it to the clonal BCR repertoire of chronic lymphocytic leukemia (CLL), a disease typically presenting in elderly individuals. RESULTS: Total numbers and relative frequencies of B cells were found to decline upon aging, with reductions in transitional B cells, memory cell types, and plasma blasts in the 70 + y group. The BCR repertoire of naive mature B cells and antigen-experienced B cells did not clearly alter until age 70y. Clear changes in IGHV gene usage were observed in naive mature B cells of 70 + y individuals, with a transitional pattern in the 50-70y group. IGHV gene usage of naive mature B cells of the 50-70y, but not the 70 + y, age group resembled that of both younger (50-70y) and older (70 + y) CLL patients. Additionally, CLL-associated stereotypic BCR were found as part of the healthy control BCR repertoire, with an age-associated increase in frequency of several stereotypic BCR (particularly subsets #2 and #5). CONCLUSION: Composition of the peripheral B cell compartment changes with ageing, with clear reductions in non-switched and CD27 + IgG+ switched memory B cells and plasma blasts in especially the 70 + y group. The BCR repertoire is relatively stable until 70y, whereafter differences in IGHV gene usage are seen. Upon ageing, an increasing trend in the occurrence of particular CLL-associated stereotypic BCR is observed.
- Klíčová slova
- Aging, B-lymphocyte, BCR repertoire, CLL, Stereotypic BCR,
- Publikační typ
- časopisecké články MeSH
Chronic lymphocytic leukemia (CLL) patients with differential somatic hypermutation status of the immunoglobulin heavy variable genes, namely mutated or unmutated, display fundamental clinico-biological differences. Considering this, we assessed prognosis separately within mutated (M-CLL) and unmutated (U-CLL) CLL in 3015 patients, hypothesizing that the relative significance of relevant indicators may differ between these two categories. Within Binet A M-CLL patients, besides TP53 abnormalities, trisomy 12 and stereotyped subset #2 membership were equivalently associated with the shortest time-to-first-treatment and a treatment probability at five and ten years after diagnosis of 40% and 55%, respectively; the remaining cases exhibited 5-year and 10-year treatment probability of 12% and 25%, respectively. Within Binet A U-CLL patients, besides TP53 abnormalities, del(11q) and/or SF3B1 mutations were associated with the shortest time-to-first-treatment (5- and 10-year treatment probability: 78% and 98%, respectively); in the remaining cases, males had a significantly worse prognosis than females. In conclusion, the relative weight of indicators that can accurately risk stratify early-stage CLL patients differs depending on the somatic hypermutation status of the immunoglobulin heavy variable genes of each patient. This finding highlights the fact that compartmentalized approaches based on immunogenetic features are necessary to refine and tailor prognostication in CLL.
- MeSH
- čas zasáhnout při rozvinutí nemoci MeSH
- chromozomální aberace MeSH
- chronická lymfatická leukemie etiologie mortalita patologie terapie MeSH
- imunogenetika MeSH
- Kaplanův-Meierův odhad MeSH
- lidé MeSH
- mutace MeSH
- náchylnost k nemoci * MeSH
- nádorové biomarkery * MeSH
- prognóza MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- staging nádorů MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nádorové biomarkery * MeSH
- MeSH
- chronická lymfatická leukemie farmakoterapie mortalita MeSH
- dospělí MeSH
- farmakoterapie mortalita MeSH
- imunoterapie mortalita MeSH
- lidé středního věku MeSH
- lidé MeSH
- míra přežití MeSH
- mladý dospělý MeSH
- retrospektivní studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
- MeSH
- chronická lymfatická leukemie genetika MeSH
- geny pro imunoglobuliny * MeSH
- lidé MeSH
- sekvenční analýza DNA normy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- úvodníky MeSH
- Geografické názvy
- Evropa MeSH
Immunoglobulin (IG) gene repertoire restrictions strongly support antigen selection in the pathogenesis of chronic lymphocytic leukemia (CLL). Given the emerging multifarious interactions between CLL and bystander T cells, we sought to determine whether antigen(s) are also selecting T cells in CLL. We performed a large-scale, next-generation sequencing (NGS) study of the T-cell repertoire, focusing on major stereotyped subsets representing CLL subgroups with undisputed antigenic drive, but also included patients carrying non-subset IG rearrangements to seek for T-cell immunogenetic signatures ubiquitous in CLL. Considering the inherent limitations of NGS, we deployed bioinformatics algorithms for qualitative curation of T-cell receptor rearrangements, and included multiple types of controls. Overall, we document the clonal architecture of the T-cell repertoire in CLL. These T-cell clones persist and further expand overtime, and can be shared by different patients, most especially patients belonging to the same stereotyped subset. Notably, these shared clonotypes appear to be disease-specific, as they are found in neither public databases nor healthy controls. Altogether, these findings indicate that antigen drive likely underlies T-cell expansions in CLL and may be acting in a CLL subset-specific context. Whether these are the same antigens interacting with the malignant clone or tumor-derived antigens remains to be elucidated.
- MeSH
- antigeny nádorové MeSH
- buněčné mikroprostředí MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- chronická lymfatická leukemie imunologie MeSH
- genová přestavba T-lymfocytů MeSH
- geny pro imunoglobuliny MeSH
- lidé MeSH
- senioři MeSH
- T-lymfocyty imunologie MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny nádorové MeSH
- MeSH
- chronická lymfatická leukemie farmakoterapie genetika mortalita patologie MeSH
- genetická predispozice k nemoci MeSH
- genetické asociační studie MeSH
- geny pro imunoglobuliny * MeSH
- hodnocení rizik MeSH
- lidé MeSH
- prognóza MeSH
- protokoly protinádorové kombinované chemoterapie terapeutické užití MeSH
- somatická hypermutace imunoglobulinových genů MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- úvodníky MeSH