Most cited article - PubMed ID 25750018
Computational study of missense mutations in phenylalanine hydroxylase
Background: Pathogenic variants in the low density lipoprotein receptor gene are associated with familial hypercholesterolemia. Some of these variants can result in incorrect folding of the LDLR protein, which is then accumulated inside the cell and cannot fulfill its function to internalize LDL particles. We analyzed the functional impact of 10 LDLR variants localized in the beta-propeller of epidermal growth factor precursor homology domain. The experimental part of the work was complemented by a structural analysis on the basis of 3D LDLR protein structure. Methods: T-Rex Chinese hamster ovary cells transfected with the human LDLR gene were used for live cell imaging microscopy, flow cytometry, and qRT-PCR analysis. Results: Our results showed that the analyzed LDLR protein variants can be divided into three groups. (1) The variants buried inside the 3D protein structure expressing proteins accumulated in the endoplasmic reticulum (ER) with no or reduced plasma membrane localization and LDL particle internalization, and associated with an increased gene expression of ER-resident chaperones. (2) The variants localized on the surface of 3D protein structure with slightly reduced LDLR plasma membrane localization and LDL particle internalization, and associated with no increased mRNA level of ER-resident chaperones. (3) The variants localized on the surface of the 3D protein structure but expressing proteins with cell responses similar to the group 1. Conclusion: All analyzed LDLR variants have been evaluated as pathogenic but with different effects on protein localization and function, and expression of genes associated with ER stress.
- Keywords
- ER stress, flow cytometry, functional analysis, live cell imaging microscopy, low density lipoprotein receptor,
- Publication type
- Journal Article MeSH
The molecular genetics of well-characterized inherited diseases, such as phenylketonuria (PKU) and hyperphenylalaninemia (HPA) predominantly caused by mutations in the phenylalanine hydroxylase (PAH) gene, is often complicated by the identification of many novel variants, often with no obvious impact on the associated disorder. To date, more than 1100 PAH variants have been identified of which a substantial portion have unknown clinical significance. In this work, we study the functionality of seven yet uncharacterized PAH missense variants p.Asn167Tyr, p.Thr200Asn, p.Asp229Gly, p.Gly239Ala, p.Phe263Ser, p.Ala342Pro, and p.Ile406Met first identified in the Czech PKU/HPA patients. From all tested variants, three of them, namely p.Asn167Tyr, p.Thr200Asn, and p.Ile406Met, exerted residual enzymatic activity in vitro similar to wild type (WT) PAH, however, when expressed in HepG2 cells, their protein level reached a maximum of 72.1% ± 4.9%, 11.2% ± 4.2%, and 36.6% ± 7.3% compared to WT PAH, respectively. Remaining variants were null with no enzyme activity and decreased protein levels in HepG2 cells. The chaperone-like effect of applied BH4 precursor increased protein level significantly for p.Asn167Tyr, p.Asp229Gly, p.Ala342Pro, and p.Ile406Met. Taken together, our results of functional characterization in combination with in silico prediction suggest that while p.Asn167Tyr, p.Thr200Asn, and p.Ile406Met PAH variants have a mild impact on the protein, p.Asp229Gly, p.Gly239Ala, p.Phe263Ser, and p.Ala342Pro severely affect protein structure and function.
- Keywords
- BH4, functional studies, missense variants, phenylalanine hydroxylase, phenylketonuria,
- MeSH
- Biopterins analogs & derivatives chemistry genetics MeSH
- Hep G2 Cells MeSH
- Phenylalanine Hydroxylase chemistry genetics MeSH
- Phenylketonurias genetics metabolism pathology MeSH
- Genotype MeSH
- Humans MeSH
- Mutation, Missense genetics MeSH
- Computer Simulation MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biopterins MeSH
- Phenylalanine Hydroxylase MeSH
- sapropterin MeSH Browser
Inherited ichthyoses belong to a large and heterogeneous group of mendelian disorders of cornification, and can be distinguished by the quality and distribution of scaling and hyperkeratosis, by other dermatologic and extracutaneous involvement, and by inheritance. We present the genetic analysis results of probands with X-linked ichthyosis, autosomal recessive congenital ichthyosis, keratinopathic ichthyosis, and a patient with Netherton syndrome. Genetic diagnostics was complemented by in silico missense variant analysis based on 3D protein structures and commonly used prediction programs to compare the yields of these two approaches to each other. This analysis revealed various structural defects in proteins coded by mutated genes while no defects were associated with known polymorphisms. Two patients with pathogenic variants in the ABCA12 gene have a premature termination codon mutation on one allele and a silent variant on the second. The silent variants c.69G > A and c.4977G > A are localised in the last nucleotide of exon 1 and exon 32, respectively, and probably affect mRNA splicing. The phenotype of both patients is very severe, including a picture harlequin foetus after birth; later (at 3 and 6 years of age, respectively) ectropin, eclabion, generalised large polygonal scaling and erythema.
- Keywords
- 3D protein structure, Autosomal recessive congenital ichthyosis, In silico analysis, Keratinopathic ichthyosis,
- MeSH
- ATP-Binding Cassette Transporters genetics MeSH
- Phenotype MeSH
- Genetic Predisposition to Disease genetics MeSH
- Ichthyosis etiology genetics MeSH
- Humans MeSH
- Codon, Nonsense genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Letter MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- ATP-Binding Cassette Transporters MeSH
- ABCA12 protein, human MeSH Browser
- Codon, Nonsense MeSH