Most cited article - PubMed ID 26007236
Reductive carboxylation and 2-hydroxyglutarate formation by wild-type IDH2 in breast carcinoma cells
Flavonoids are naturally occurring compounds found in fruits, vegetables, and other plant-based foods, and they are known for their health benefits, such as UV protection, antioxidant, anti-inflammatory, and antiproliferative properties. This study investigates whether flavonoids, such as quercetin and 2,3-dehydrosilybin, can act as photoactivatable carbon monoxide (CO)-releasing molecules under physiological conditions. CO has been recently recognized as an important signaling molecule. Here, we show that upon direct irradiation, CO was released from both flavonoids in PBS with chemical yields of up to 0.23 equiv, which increased to almost unity by sensitized photooxygenation involving singlet oxygen. Photoreleased CO reduced cellular toxicity caused by high flavonol concentrations, partially restored mitochondrial respiration, reduced superoxide production induced by rotenone and high flavonol levels, and influenced the G0/G1 and G2/M phases of the cell cycle, showing antiproliferative effects. The findings highlight the potential of quercetin and 2,3-dehydrosilybin as CO-photoreleasing molecules with chemopreventive and therapeutic implications in human pathology and suggest their possible roles in plant biology.
- Keywords
- 2,3-dehydrosilybin, carbon monoxide, cell cycle, mitochondrial respiration, oxidative stress, photoCORM, photoinduced release, quercetin,
- MeSH
- Cell Cycle drug effects MeSH
- Flavonoids * chemistry pharmacology MeSH
- Humans MeSH
- Mitochondria metabolism drug effects MeSH
- Carbon Monoxide * chemistry metabolism MeSH
- Cell Proliferation drug effects MeSH
- Quercetin chemistry pharmacology MeSH
- Plant Extracts * chemistry pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Flavonoids * MeSH
- Carbon Monoxide * MeSH
- Quercetin MeSH
- Plant Extracts * MeSH
Mitochondria (mt) represent the vital hub of the molecular physiology of the cell, being decision-makers in cell life/death and information signaling, including major redox regulations and redox signaling. Now we review recent advances in understanding mitochondrial redox homeostasis, including superoxide sources and H2O2 consumers, i.e., antioxidant mechanisms, as well as exemplar situations of physiological redox signaling, including the intramitochondrial one and mt-to-cytosol redox signals, which may be classified as acute and long-term signals. This review exemplifies the acute redox signals in hypoxic cell adaptation and upon insulin secretion in pancreatic beta-cells. We also show how metabolic changes under these circumstances are linked to mitochondrial cristae narrowing at higher intensity of ATP synthesis. Also, we will discuss major redox buffers, namely the peroxiredoxin system, which may also promote redox signaling. We will point out that pathological thresholds exist, specific for each cell type, above which the superoxide sources exceed regular antioxidant capacity and the concomitant harmful processes of oxidative stress subsequently initiate etiology of numerous diseases. The redox signaling may be impaired when sunk in such excessive pro-oxidative state.
- MeSH
- Antioxidants metabolism MeSH
- Insulin-Secreting Cells metabolism MeSH
- Humans MeSH
- Mitochondria * metabolism MeSH
- Oxidation-Reduction * MeSH
- Oxidative Stress physiology MeSH
- Signal Transduction physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Antioxidants MeSH
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has been associated with the host dysmetabolism of branched-chain amino acids (BCAAs), however, the implications for the role of BCAA metabolism in PDAC development or progression are not clear. The mitochondrial catabolism of valine, leucine, and isoleucine is a multistep process leading to the production of short-chain R-CoA species. They can be subsequently exported from mitochondria as short-chain carnitines (SC-CARs), utilized in anabolic pathways, or released from the cells. METHODS: We examined the specificities of BCAA catabolism and cellular adaptation strategies to BCAA starvation in PDAC cells in vitro. We used metabolomics and lipidomics to quantify major metabolic changes in response to BCAA withdrawal. Using confocal microscopy and flow cytometry we quantified the fluorescence of BODIPY probe and the level of lipid droplets (LDs). We used BODIPY-conjugated palmitate to evaluate transport of fatty acids (FAs) into mitochondria. Also, we have developed a protocol for quantification of SC-CARs, BCAA-derived metabolites. RESULTS: Using metabolic profiling, we found that BCAA starvation leads to massive triglyceride (TG) synthesis and LD accumulation. This was associated with the suppression of activated FA transport into the mitochondrial matrix. The suppression of FA import into mitochondria was rescued with the inhibitor of the acetyl-CoA carboxylase (ACC) and the activator of AMP kinase (AMPK), which both regulate carnitine palmitoyltransferase 1A (CPT1) activation status. CONCLUSIONS: Our data suggest that BCAA catabolism is required for the import of long chain carnitines (LC-CARs) into mitochondria, whereas the disruption of this link results in the redirection of activated FAs into TG synthesis and its deposition into LDs. We propose that this mechanism protects cells against mitochondrial overload with LC-CARs and it might be part of the universal reaction to amino acid perturbations during cancer growth, regulating FA handling and storage.
- Keywords
- BCAA metabolism, Fatty acid/Transport, Fluorescence microscopy, Lipid droplets, Lipidomics, Mitochondria, Pancreatic cancer, Triglycerides,
- Publication type
- Journal Article MeSH
Mitochondrial production of 2-hydroxyglutarate (2HG) can be catalyzed by wild-type isocitrate dehydrogenase 2 (IDH2) and alcohol dehydrogenase, iron-containing 1 (ADHFE1). We investigated whether biochemical background and substrate concentration in breast cancer cells promote 2HG production. To estimate its role in 2HG production, we quantified 2HG levels and its enantiomers in breast cancer cells using analytical approaches for metabolomics. By manipulation of mitochondrial substrate fluxes using genetic and pharmacological approaches, we demonstrated the existence of active competition between 2HG producing enzymes, i.e., IDH2 and ADHFE1. Moreover, we showed that distinct fractions of IDH2 enzyme molecules operate in distinct oxido-reductive modes, providing NADPH and producing 2HG simultaneously. We have also detected 2HG release in the urine of breast cancer patients undergoing adjuvant therapy and detected a correlation with stages of breast carcinoma development. In summary, we provide a background for vital mitochondrial production of 2HG in breast cancer cells with outcomes towards cancer biology and possible future diagnosis of breast carcinoma.
- Keywords
- 2HG, IDH2, breast carcinoma,
- Publication type
- Journal Article MeSH
For severe unconjugated hyperbilirubinemia the gold standard treatment is phototherapy with blue-green light, producing more polar photo-oxidation products, believed to be non-toxic. The aim of the present study was to compare the effects of bilirubin (BR) and lumirubin (LR), the major BR photo-oxidation product, on metabolic and oxidative stress markers. The biological activities of these pigments were investigated on several human and murine cell lines, with the focus on mitochondrial respiration, substrate metabolism, reactive oxygen species production, and the overall effects on cell viability. Compared to BR, LR was found to be much less toxic, while still maintaining a similar antioxidant capacity in the serum as well as suppressing activity leading to mitochondrial superoxide production. Nevertheless, due to its lower lipophilicity, LR was less efficient in preventing lipoperoxidation. The cytotoxicity of BR was affected by the cellular glycolytic reserve, most compromised in human hepatoblastoma HepG2 cells. The observed effects were correlated with changes in the production of tricarboxylic acid cycle metabolites. Both BR and LR modulated expression of PPARα downstream effectors involved in lipid and glucose metabolism. Proinflammatory effects of BR, evidenced by increased expression of TNFα upon exposure to bacterial lipopolysaccharide, were observed in murine macrophage-like RAW 264.7 cells. Collectively, these data point to the biological effects of BR and its photo-oxidation products, which might have clinical relevance in phototherapy-treated hyperbilirubinemic neonates and adult patients.
- Keywords
- antioxidant, bilirubin, cell respiration, intracellular metabolite, lumirubin,
- Publication type
- Journal Article MeSH
Significance: Cancer cells are stabilized in an undifferentiated state similar to stem cells. This leads to profound modifications of their metabolism, which further modifies their genetics and epigenetics as malignancy progresses. Specific metabolites and enzymes may serve as clinical markers of cancer progression. Recent Advances: Both 2-hydroxyglutarate (2HG) enantiomers are associated with reprogrammed metabolism, in grade III/IV glioma, glioblastoma, and acute myeloid leukemia cells, and numerous other cancer types, while acting also in the cross talk of tumors with immune cells. 2HG contributes to specific alternations in cancer metabolism and developed oxidative stress, while also inducing decisions on the differentiation of naive T lymphocytes, and serves as a signal messenger in immune cells. Moreover, 2HG inhibits chromatin-modifying enzymes, namely 2-oxoglutarate-dependent dioxygenases, and interferes with hypoxia-inducible factor (HIF) transcriptome reprogramming and mammalian target of rapamycin (mTOR) pathway, thus dysregulating gene expression and further promoting cancerogenesis. Critical Issues: Typically, heterozygous mutations within the active sites of isocitrate dehydrogenase isoform 1 (IDH1)R132H and mitochondrial isocitrate dehydrogenase isoform 2 (IDH2)R140Q provide cells with millimolar r-2-hydroxyglutarate (r-2HG) concentrations, whereas side activities of lactate and malate dehydrogenase form submillimolar s-2-hydroxyglutarate (s-2HG). However, even wild-type IDH1 and IDH2, notably under shifts toward reductive carboxylation glutaminolysis or changes in other enzymes, lead to "intermediate" 0.01-0.1 mM 2HG levels, for example, in breast carcinoma compared with 10-8M in noncancer cells. Future Directions: Uncovering further molecular metabolism details specific for given cancer cell types and sequence-specific epigenetic alternations will lead to the design of diagnostic approaches, not only for predicting patients' prognosis or uncovering metastases and tumor remissions but also for early diagnostics.
- Keywords
- 2-hydroxyglutarate, DNA and histone hypermethylation, immune system, isocitrate dehydrogenase 1 and 2, metabolic marker, metabolic reprogramming in cancer, tumor cross talk,
- MeSH
- Energy Metabolism MeSH
- Epigenesis, Genetic MeSH
- Glutarates metabolism MeSH
- Immunomodulation MeSH
- Isocitrate Dehydrogenase genetics metabolism MeSH
- Humans MeSH
- Mutation MeSH
- Disease Susceptibility * MeSH
- Neoplastic Stem Cells metabolism MeSH
- Neoplasms etiology metabolism pathology MeSH
- Oxidation-Reduction MeSH
- Disease Progression MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Signal Transduction MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- alpha-hydroxyglutarate MeSH Browser
- Glutarates MeSH
- IDH1 protein, human MeSH Browser
- IDH2 protein, human MeSH Browser
- Isocitrate Dehydrogenase MeSH
Aims: Glucose-stimulated insulin secretion (GSIS) in pancreatic β cells was expected to enhance mitochondrial superoxide formation. Hence, we elucidated relevant redox equilibria. Results: Unexpectedly, INS-1E cells at transitions from 3 (11 mM; pancreatic islets from 5 mM) to 25 mM glucose decreased matrix superoxide release rates (MitoSOX Red monitoring validated by MitoB) and H2O2 (mitoHyPer, subtracting mitoSypHer emission). Novel double-channel fluorescence lifetime imaging, approximating free mitochondrial matrix NADHF, indicated its ∼20% decrease. Matrix NAD+F increased on GSIS, indicated by the FAD-emission lifetime decrease, reflecting higher quenching of FAD by NAD+F. The participation of pyruvate/malate and pyruvate/citrate redox shuttles, elevating cytosolic NADPHF (iNAP1 fluorescence monitoring) at the expense of matrix NADHF, was indicated, using citrate (2-oxoglutarate) carrier inhibitors and cytosolic malic enzyme silencing: All changes vanished on these manipulations. 13C-incorporation from 13C-L-glutamine into 13C-citrate reflected the pyruvate/isocitrate shuttle. Matrix NADPHF (iNAP3 monitored) decreased. With decreasing glucose, the suppressor of Complex III site Q electron leak (S3QEL) suppressor caused a higher Complex I IF site contribution, but a lower superoxide fraction ascribed to the Complex III site IIIQo. Thus, the diminished matrix NADHF/NAD+F decreased Complex I flavin site IF superoxide formation on GSIS. Innovation: Mutually validated methods showed decreasing superoxide release into the mitochondrial matrix in pancreatic β cells on GSIS, due to the decreasing matrix NADHF/NAD+F (NADPHF/NADP+F) at increasing cytosolic NADPHF levels. The developed innovative methods enable real-time NADH/NAD+ and NADPH/NADP+ monitoring in any distinct cell compartment. Conclusion: The export of reducing equivalents from mitochondria adjusts lower mitochondrial superoxide production on GSIS, but it does not prevent oxidative stress in pancreatic β cells.
- Keywords
- Complex I, NADH/NAD+ ratio, fluorescence lifetime imaging, glucose-stimulated insulin secretion, mitochondrial superoxide generation, pancreatic β cells,
- MeSH
- Adenosine Triphosphate metabolism MeSH
- Insulin-Secreting Cells metabolism MeSH
- Cell Respiration MeSH
- Chromatography, Liquid MeSH
- Energy Metabolism MeSH
- Flavin-Adenine Dinucleotide metabolism MeSH
- Glucose metabolism MeSH
- Mass Spectrometry MeSH
- Rats MeSH
- Citric Acid metabolism MeSH
- Membrane Potential, Mitochondrial MeSH
- Metabolic Networks and Pathways MeSH
- Metabolomics methods MeSH
- Mitochondria metabolism MeSH
- NAD metabolism MeSH
- Hydrogen Peroxide metabolism MeSH
- Insulin Secretion * MeSH
- Signal Transduction MeSH
- Superoxides metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenosine Triphosphate MeSH
- Flavin-Adenine Dinucleotide MeSH
- Glucose MeSH
- Citric Acid MeSH
- NAD MeSH
- Hydrogen Peroxide MeSH
- Superoxides MeSH
Wild type mitochondrial isocitrate dehydrogenase (IDH2) was previously reported to produce oncometabolite 2-hydroxyglutarate (2HG). Besides, mitochondrial deacetylase SIRT3 has been shown to regulate the oxidative function of IDH2. However, regulation of 2HG formation by SIRT3-mediated deacetylation was not investigated yet. We aimed to study mitochondrial IDH2 function in response to acetylation and deacetylation, and focus specifically on 2HG production by IDH2. We used acetylation surrogate mutant of IDH2 K413Q and assayed enzyme kinetics of oxidative decarboxylation of isocitrate, 2HG production by the enzyme, and 2HG production in cells. The purified IDH2 K413Q exhibited lower oxidative reaction rates than IDH2 WT. 2HG production by IDH2 K413Q was largely diminished at the enzymatic and cellular level, and knockdown of SIRT3 also inhibited 2HG production by IDH2. Contrary, the expression of putative mitochondrial acetylase GCN5L likely does not target IDH2. Using mass spectroscopy, we further identified lysine residues within IDH2, which are the substrates of SIRT3. In summary, we demonstrate that 2HG levels arise from non-mutant IDH2 reductive function and decrease with increasing acetylation level. The newly identified lysine residues might apply in regulation of IDH2 function in response to metabolic perturbations occurring in cancer cells, such as glucose-free conditions.
- MeSH
- Acetylation MeSH
- Glutarates metabolism MeSH
- Isocitrate Dehydrogenase genetics metabolism MeSH
- Isocitrates chemistry MeSH
- Humans MeSH
- Mitochondria metabolism MeSH
- Cell Line, Tumor MeSH
- NADP metabolism MeSH
- Oxidation-Reduction MeSH
- Nerve Tissue Proteins metabolism MeSH
- Sirtuin 3 metabolism MeSH
- Gene Silencing MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- alpha-hydroxyglutarate MeSH Browser
- BLOC1S1 protein, human MeSH Browser
- Glutarates MeSH
- IDH2 protein, human MeSH Browser
- Isocitrate Dehydrogenase MeSH
- Isocitrates MeSH
- isocitric acid MeSH Browser
- NADP MeSH
- Nerve Tissue Proteins MeSH
- SIRT3 protein, human MeSH Browser
- Sirtuin 3 MeSH
Human hepatocellular carcinoma HepG2 cells are forced to oxidative phosphorylation (OXPHOS), when cultured in aglycemic conditions at galactose and glutamine. These Oxphos cells represent a prototype of cancer cell bioenergetics with mixed aerobic glycolysis and OXPHOS. We aimed to determine fractions of (i) glutaminolytic pathway involving aminotransferase reaction supplying 2-oxoglutarate (2OG) to the Krebs cycle vs. (ii) active segment of the Krebs cycle with aconitase and isocitrate dehydrogenase-3 (ACO-IDH3), which is typically inactive in cancer cells due to the citrate export from mitochondria. At normoxia, Oxphos cell respiration was decreased down to ~15 and ~10% by the aminotransferase inhibitor aminooxyacetate (AOA) or with AOA plus the glutamate-dehydrogenase inhibitor bithionol, respectively. Phosphorylating to non-phosphorylating respiration ratios dropped from >6.5 to 1.9 with AOA and to zero with AOA plus bithionol. Thus, normoxic Oxphos HepG2 cells rely predominantly on glutaminolysis. Addition of membrane-permeant dimethyl-2-oxoglutarate (dm2OG) to inhibited cells instantly partially restored respiration, evidencing the lack of 2OG-dehydrogenase substrate upon aminotransferase inhibition. Surprisingly, after 72 hr of 5% O2 hypoxia, the AOA (bithionol) inhibition ceased and respiration was completely restored. Thus in aglycemic HepG2 cells, the hypoxia-induced factor (HIF) upregulation of glycolytic enzymes enabled acceleration of glycolysis pathway, preceded by galactolysis (Leloir pathway), redirecting pyruvate via still incompletely blocked pyruvate dehydrogenase toward the ACO-IDH3. Glycolytic flux upregulation at hypoxia was evidently matched by a higher activity of the Leloir pathway in Oxphos cells. Hypoxic Oxphos cells increased 2-fold the NADPH oxidase activity, whereas hypoxic glycolytic cells decreased it. Oxphos cells and glycolytic cells at 5 mM glucose decreased their reduced glutathione fraction. In contrast to aglycemic cells, glycolytic HepG2 cells decreased their respiration at hypoxia despite the dm2OG presence, i.e., even at unlimited respiratory substrate availability for 72 hr at 5% O2, exhibiting the canonical HIF-mediated adaptation. Nevertheless, their ATP content was much higher with dm2OG as compared to its absence during hypoxic adaptation. Thus, the metabolic plasticity of cancer cells is illustrated under conditions frequently established for solid tumors in vivo, such as aglycemia plus hypoxia. Consequently, a wide acceptance of the irreversible and exclusive Warburg phenotype in cancer cells is incorrect.
- Keywords
- HepG2 cells, Warburg phenotype, aminotransferase inhibiton, cancer mitochondria, glutaminolysis, hypoxia,
- Publication type
- Journal Article MeSH
Nutritional factors which exhibit antioxidant properties, such as those contained in green plants, may be protective against cancer. Chlorophyll and other tetrapyrrolic compounds which are structurally related to heme and bilirubin (a bile pigment with antioxidant activity) are among those molecules which are purportedly responsible for these effects. Therefore, the aim of our study was to assess both the antiproliferative and antioxidative effects of chlorophylls (chlorophyll a/b, chlorophyllin, and pheophytin a) in experimental pancreatic cancer. Chlorophylls have been shown to produce antiproliferative effects in pancreatic cancer cell lines (PaTu-8902, MiaPaCa-2, and BxPC-3) in a dose-dependent manner (10-125 μmol/L). Chlorophylls also have been observed to inhibit heme oxygenase (HMOX) mRNA expression and HMOX enzymatic activity, substantially affecting the redox environment of pancreatic cancer cells, including the production of mitochondrial/whole-cell reactive oxygen species, and alter the ratio of reduced-to-oxidized glutathione. Importantly, chlorophyll-mediated suppression of pancreatic cancer cell viability has been replicated in in vivo experiments, where the administration of chlorophyll a resulted in the significant reduction of pancreatic tumor size in xenotransplanted nude mice. In conclusion, this data suggests that chlorophyll-mediated changes on the redox status of pancreatic cancer cells might be responsible for their antiproliferative and anticancer effects and thus contribute to the decreased incidence of cancer among individuals who consume green vegetables.
- MeSH
- Antioxidants metabolism MeSH
- Chlorophyll pharmacology MeSH
- Extracellular Signal-Regulated MAP Kinases metabolism MeSH
- Pheophytins metabolism MeSH
- Glutathione metabolism MeSH
- Glutathione Disulfide metabolism MeSH
- Heme Oxygenase (Decyclizing) metabolism MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Humans MeSH
- Mitochondria drug effects metabolism MeSH
- Cell Line, Tumor MeSH
- Pancreatic Neoplasms metabolism MeSH
- Oxidation-Reduction drug effects MeSH
- Hydrogen Peroxide metabolism MeSH
- Antineoplastic Agents pharmacology MeSH
- Superoxides metabolism MeSH
- Synechocystis chemistry MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antioxidants MeSH
- Chlorophyll MeSH
- Extracellular Signal-Regulated MAP Kinases MeSH
- Pheophytins MeSH
- Glutathione MeSH
- Glutathione Disulfide MeSH
- Heme Oxygenase (Decyclizing) MeSH
- Hydrogen Peroxide MeSH
- pheophytin a MeSH Browser
- Antineoplastic Agents MeSH
- Superoxides MeSH